Bessie is out in the field and wants to get back to the barn to get as much sleep as possible before Farmer John wakes her for the morning milking. Bessie needs her beauty sleep, so she wants to get back as quickly as possible.
Farmer John's field has N (2 <= N <= 1000) landmarks in it, uniquely numbered 1..N. Landmark 1 is the barn; the apple tree grove in which Bessie stands all day is landmark N. Cows travel in the field using T (1 <= T <= 2000) bidirectional cow-trails of various lengths between the landmarks. Bessie is not confident of her navigation ability, so she always stays on a trail from its start to its end once she starts it.
Given the trails between the landmarks, determine the minimum distance Bessie must walk to get back to the barn. It is guaranteed that some such route exists.
Input
* Line 1: Two integers: T and N
* Lines 2..T+1: Each line describes a trail as three space-separated integers. The first two integers are the landmarks between which the trail travels. The third integer is the length of the trail, range 1..100.
Output
* Line 1: A single integer, the minimum distance that Bessie must travel to get from landmark N to landmark 1.
Sample Input
5 5
1 2 20
2 3 30
3 4 20
4 5 20
1 5 100
Sample Output
90
Hint
INPUT DETAILS:
There are five landmarks.
OUTPUT DETAILS:
Bessie can get home by following trails 4, 3, 2, and 1.
题目描述
贝茜在谷仓外的农场上,她想回到谷仓,在第二天早晨农夫约翰叫她起来挤奶之前尽可能多地睡上一觉.由于需要睡个好觉,贝茜必须尽快回到谷仓.农夫约翰的农场上有N(2≤N≤1000)个路标,每一个路标都有唯一的编号(1到N).路标1是谷仓,路标N是贝茜一整天呆在那里的果树园.农场的所有路标之间共有T(1≤T≤2000)条不同长度的供奶牛走的小路(无方向).贝茜对她识别方向的能力不是很自信,所以她每次总是从一条小路的头走到尾,再以这条路的尾作为下一条路的头开始走. 现给出所有路标之间的小路,要求输出贝茜回到谷仓的最短路程(每组输入数据都保证有解).
输入
第1行:2个整数T和N.
第2到T+1行:每行用空格隔开的三个整数描述一条小路.前两个整数是这条小路的尾和头,
第三个整数是这条小路的长度(不大于100).
输出
一个整数,表示贝茜从路标N到路标1所经过的最短路程
#include <iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
const int inf=0x3f3f3f3;
const int N=1010;
int mp[N][N];
int vis[N];
int t,n;
void dijkstra()
{
int b[N];
int mi,v;
int i,j;
for(i=1; i<=n; i++)
b[i]=mp[1][i];
for(i=1; i<=n; i++)
{
mi=inf;
for(j=1; j<=n; j++)
{
if(!vis[j]&&mi>b[j])
{
v=j;
mi=b[j];
}
}
vis[v]=1;
for(j=1; j<=n; j++)
{
if(!vis[j]&&b[j]>mp[v][j]+b[v])
{
b[j]=mp[v][j]+b[v];
}
}
}
printf("%d\n",b[n]);
}
int main()
{
int i,j,a,c,b;
scanf("%d%d",&t,&n);
for(i=1; i<=n; i++)
for(j=1; j<=n; j++)
{
if(i==j)
mp[i][j]=0;
else mp[i][j]=mp[j][i]=inf;
}
for(i=1; i<=t; i++)
{
scanf("%d%d%d",&a,&b,&c);
if(mp[a][b]>c)
mp[a][b]=mp[b][a]=c;
}
memset(vis,0,sizeof(vis));
dijkstra();
return 0;
}