题目链接:https://cn.vjudge.net/problem/HDU-1874
某省自从实行了很多年的畅通工程计划后,终于修建了很多路。不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多。这让行人很困扰。
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
Sample Input
3 3 0 1 1 0 2 3 1 2 1 0 2 3 1 0 1 1 1 2
Sample Output
2 -1
#include <iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
const int N=201;
const int inf=0x3f3f3f;
int mp[N][N];
int vis[N];
int n,m,s,t;
void dijstra()
{
int mi,v;
int b[N];
memset(vis,0,sizeof(vis));
for(int i=0; i<n; i++)
b[i]=mp[s][i];
for(int i=0; i<n; i++)
{
mi=inf;
for(int j=0; j<n; j++)
{
if(!vis[j]&&b[j]<mi)
{
mi=b[j];
v=j;
}
}
vis[v]=1;
for(int j=0; j<n; j++)
{
if(!vis[j]&&b[j]>b[v]+mp[v][j])
b[j]=b[v]+mp[v][j];
}
}
if(b[t]<inf)printf("%d\n",b[t]);
else printf("-1\n");
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
for(int i=0; i<n; i++)
{
for(int j=0; j<n; j++)
{
if(i==j)
mp[i][j]=0;
else mp[i][j]=mp[j][i]=inf;
}
}
for(int i=0; i<m; i++)
{
int a,c,b;
scanf("%d%d%d",&a,&b,&c);
if(c<mp[a][b])
mp[a][b]=mp[b][a]=c;
}
scanf("%d%d",&s,&t);
if(s==t)printf("0\n");
else dijstra();
}
return 0;
}