matlab学习-第五章-代数方程求解和其它符号工具

解基本代数方程

x = solve(‘x+8’)
书上的例子是这样的,但是我试了一下发现会报错,可能是版本的问题,新的版本写方程式要这样写:
syms x
eqn = sin(x) == 1;
solx = solve(eqn,x)

即先写变量,然后写方程式,然后利用solve指令解方程
这样写起来会可读性高一点

然后方程解出来经常会是分数,或者说是精确值,可以用vpa(a)转化为小数,或者直接用double()

同时,对于方程ax + 5 = 0,a也要定义为变量syms,才能解

二次方程求解

对于多次方程,会产生多个根,同时matlab会默认产生虚数根,结果会保存在数组中,利用x()可以访问

符号方程绘图

可以用ezplot和fplot,区别和用法不说了,有点麻烦,下次看

高次方程求解

与上面同理

方程组

这部分没有什么技术难度,主要是格式问题,等会总结。。。

方程展开与合并

expand命令,注意所有涉及到未知量都要事先定义
用syms

collect命令,进行合并

但是试了试发现对于多项式好像没什么区别,都是把式子变成多项式相加的形式。。。。不知道区别是不是体现在其他什么地方

factor指令,因式分解,化为乘式

simplify 命令,因式化简,可以处理分式、指数式、三角恒等式等等

使用指数和对数函数求解方程

到目前为止我们的使用的例子都是考虑多项式。符号求解器还允许使用指数和对数。
方法同理,略了。。。

函数的级数表示

taylor 函数返回某个函数的泰勒(Taylor)级数展开式
这里只试着展开了sinx,其他的试了试报错了,需要更深入的学习用法,比如在哪个点展开、展开多少项等等问题。先放一放。。。

总之这章没什么有意义的内容。。。先到这里

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值