我们从二叉树的根节点 root 开始进行深度优先搜索。
在遍历中的每个节点处,我们输出 D 条短划线(其中 D 是该节点的深度),然后输出该节点的值。(如果节点的深度为 D,则其直接子节点的深度为 D + 1。根节点的深度为 0)。
如果节点只有一个子节点,那么保证该子节点为左子节点。
给出遍历输出 S,还原树并返回其根节点 root。
示例 :
输入:"1-2--3--4-5--6--7"
输出:[1,2,5,3,4,6,7]
输入:"1-2--3---4-5--6---7"
输出:[1,2,5,3,null,6,null,4,null,7]
输入:"1-401--349---90--88"
输出:[1,401,null,349,88,90]
提示:
原始树中的节点数介于 1 和 1000 之间。
每个节点的值介于 1 和 10 ^ 9 之间。
代码:
/**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func recoverFromPreorder(S string) *TreeNode {
root := []*TreeNode{}
index := 0
for index < len(S) {
// 获取节点level
level := 0
for S[index] == '-'{
level++
index++
}
// 获取值
sValue := ""
for index < len(S) && S[index] >= '0' && S[index] <= '9' {
sValue += string(S[index])
index++
}
value,_ := strconv.Atoi(sValue)
node := &TreeNode{Val: value}
// 找节点
if level == len(root){ // 左节点,一路遍历到底
if len(root) > 0 {
root[len(root) - 1].Left = node
}
} else { // 一直到level不是下一个子节点
// 直接截取到对等level的子节点,赋予右节点
root = root[:level]
root[len(root) - 1].Right = node
}
root = append(root, node)
}
return root[0]
}