完全平方数
暴力法
#include <stdio.h>
int main()
{
int i;
int j;
int k;
for(i = 0; i < 1000; i++)//我们要判断的数
{
for(j = 0; j < 1000; j++)//判断i+100是否是j的平方数
{
if(i + 100 == j * j)
{
for(k = j; k < 1000; k++)//判断i+168是否是k的平方
{
if(i + 100 + 168 == k * k)
{
printf("%d\n",i);
}
}
}
}
}
return 0;
}
利用平方差公式分析取值范围
转自菜鸟教程:https://www.runoob.com/cprogramming/c-exercise-example3.html
推理严谨,考虑到了负数的情况
/*
/*
题目:一个整数,它加上100后是一个完全平方数,再加上168又是一个完全平方数,请问该数是多少?
程序分析:
假设该数为 x。
1、则:x + 100 = n^2, x + 100 + 168 = m^2
2、计算等式:m^2 - n^2 = (m + n)(m - n) = 168 平方差公式
3、设置: m + n = i,m - n = j,i * j =168,i 和 j 至少一个是偶数
4、可得: m = (i + j) / 2, n = (i - j) / 2,i 和 j 要么都是偶数,要么都是奇数。
5、从 3 和 4 推导可知道,i 与 j 均是大于等于 2 的偶数。
6、由于 i * j = 168, j>=2,则 1 < i < 168 / 2 + 1。
7、接下来将 i 的所有数字循环计算即可。
*/
#include <stdio.h>
int main (void)
{
int i, j, m, n, x;
for (i = 1; i < 168 / 2 + 1; i++)
{
if (168 % i == 0)
{
j = 168 / i;
if ( i > j && (i + j) % 2 == 0 && (i - j) % 2 == 0)
{
m = (i + j) / 2;
n = (i - j) / 2;
x = n * n - 100;
printf ("%d + 100 = %d * %d\n", x, n, n);
printf ("%d + 268 = %d * %d\n", x, m, m);
}
}
}
return 0;
}
极限法判断范围
具体分析过程可看博主图片
转自:https://www.runoob.com/cprogramming/c-exercise-example3.html
原来是java代码转成了c,但是没有考虑负数情况,分析过程可以看原文
#include<stdio.h>
#include<math.h>
// 判断该数值是否符合: x+100=m^2
double testDataM(double data) {
// 求得: m^2
double mPow = data*data;
// 获取x的值
double value = mPow - 100;
return value;
}
// 判断该数值是否符合:x+100+186=n^2
int testDataN(double data) {
// 获取:n^2
double mPow = data + 100 + 168;
// 对n 开方
double value = sqrt(mPow);
// 判断 n开方后是否是整数
if (value == (int) value) {
return 1;
}
return 0;
}
int main(){
// 确定 m的值范围
for (int i = 11; i <= 83; i++) {
// 得到 x的值
double x = testDataM(i);
// 判断 n是否为整数
if (testDataN(x)) {
printf("这个数是:%.2f\n" , x);
}
}
}