医学生还在为药方头疼?看AI-AGENT如何一键读懂药品信息!——基于RAG技术与多模态模型的智能药方分析专家构建教程

NVIDIA AI-AGENT夏季训练营

项目名称:AI-AGENT夏季训练营 — RAG智能药方分析专家

报告日期:2024年8月18日

项目负责人:Astron-fjh

Github项目链接MediAssist-RAG-Chatbot

1. 项目概述

本项目旨在开发一个基于RAG(Retrieval-Augmented Generation)技术的智能对话机器人,能够从药单图片中提取信息,并结合大模型分析药品信息,推测病情,进一步为用户提供健康咨询。项目亮点包括OCR图像文本提取、结合NVIDIA LLaMA 3大模型的药品分析与病情推测、以及基于提取信息的智能对话功能。此系统特别适用于医疗场景中的辅助诊断和用户健康咨询。

2. 技术方案与实施步骤

2.1 模型选择

  • 大模型选择:项目采用了NVIDIA LLaMA 3-70B-Instruct大模型,因其在处理复杂语言任务(如医学文本解析、对话生成等)上表现优越。RAG模型的优势在于通过结合检索和生成技术,能够在对话过程中实时引入相关背景信息,从而提高对话的专业性和准确性。
  • RAG模型的优势:RAG模型结合了检索和生成的能力,能够在回答问题时调用预训练知识库中的信息,从而提升回答的准确性与深度。这种模型非常适合需要在大规模数据基础上进行准确回答的场景,如药品信息的查询与病情推测。

2.2 数据的构建

  • 数据构建过程:数据主要来源于药单图像,通过OCR技术提取文本信息。使用Tesseract OCR工具进行图像文字识别,并结合中文语言包优化识别效果。将提取的文本数据作为输入,传入大模型进行分析和生成对话。

2.3 功能整合

  • 多模态功能整合:项目结合了OCR技术和大语言模型,OCR用于从图像中提取药品信息,而大语言模型则用于解析药品作用、推测病情与对话生成等功能。此多模态整合策略使系统能够处理复杂的输入,并输出符合预期的结果。

2.4 实施步骤

2.4.1 环境搭建
  1. 开发环境:使用Python作为主要开发语言,依赖库包括pytesseract用于OCR,gradio用于创建前端界面,langchain用于模型集成。

  2. 安装Python库:首先配置NVIDIA的API密钥,接着安装Tesseract OCR和相关Python库。使用Tesseract支持中文的语言包以实现对药单中中文信息的提取。

# 安装Tesseract OCR库
pip install pytesseract

# 安装Gradio库,用于构建前端界面
pip install gradio

# 安装LangChain库,用于与NVIDIA API的集成
pip install langchain

# 安装langchain_core
pip install langchain_core

# 安装Pillow库,用于处理图像
pip install pillow

# 安装NVIDIA API的端点库
pip install langchain_nvidia_ai_endpoints
  1. 安装 Tesseract OCR
    1. 下载Tesseract安装包并安装。
    2. GitHub Tesseract 项目中下载中文语言包chi_sim.traineddata(简体中文)或chi_tra.traineddata(繁体中文)。将该文件放置在Tesseract的tessdata目录中。默认情况下,这个目录通常在Tesseract-OCR安装目录下的tessdata文件夹中,例如D:\Tesseract-OCR\tessdata
    3. 确保pytesseract.pytesseract.tesseract_cmd指向Tesseract的可执行文件路径。如:
pytesseract.pytesseract.tesseract_cmd = r'C:\Program Files\Tesseract-OCR\tesseract.exe'
  1. 申请NIM的API Key,来调用NIM的计算资源

    进入https://build.nvidia.com/microsoft/phi-3-vision-128k-instruct,点击Get API Key按钮,生成一个秘钥。

    image-20240818175736627

2.4.2 代码实现
  1. 导入工具包

    import gradio as gr
    import pytesseract
    from PIL import Image
    from langchain_nvidia_ai_endpoints import ChatNVIDIA
    from langchain_core.prompts import ChatPromptTemplate
    from langchain.schema.<
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Astron-fjh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值