东华oj-进阶题第49题-我素故我在

在这里插入图片描述

49 我素故我在

作者: xxx时间限制: 1S章节: 深度优先搜索

问题描述 :

有这样一种素数叫纯素数(YY出来的名字),当它是一个多位数的时候,你把它的末位去掉之后余下的数依然是一个素数。比如说2393,2393
本身是一个素数,它的末位去掉之后,余下的是239。239 是一个素数,它的末位去掉之后,余下的是23
。23是一个素数,它的末位去掉之后,余下的是2 。2依然还是一个素数。纯素数的长度叫做“维”。2393
是一个4维素数。3797也是一个4维素数。 输入说明 :

第一行先给出一共有多少组数据N(N<=1000),接下来有N组数据.

每组包括一个整数T(1<=T<=8)。

输出说明 :

按照从小到大的顺序输出所有的T维纯素数。 输入范例 : 3 8 1 4 输出范例 : 23399339 29399999
37337999 59393339 73939133 2 3 5 7 2333 2339 2393 2399 2939 3119 3137
3733 3739 3793 3797 5939 7193 7331 7333 7393

知道题目要用深度优先,但是我还是用错了……我最开始想的是用深度优先判断纯素数,而不是搜索纯素数
代码:

/*
	T49 我素故我在 
	算法概述:由于3维的纯素数一定与2维有关,4维的纯素数一定与3维
	有关,以此类推。所以可以先将8维和以下的纯素数通过深度优先搜索
	的方法求出并存起来,输入的时候直接问数组就好了 
*/ 

#include<stdio.h>

int purePrimes[10][100];// 存放所有的纯素数,如nums[1][2]表示的是一维的第二个纯素数 
int countAmt[100];// 存放某维纯素数的个数 
int judgePrime(int n); 
void DFS(int x, int dimen, int count); 

int main() {
	int N = 0;
	int T = 0;
	int i = 0;
	
	scanf("%d", &N);
	while (N--) {
		// 先将所有的纯素数求出来 
		for (i = 2; i < 10; i++) { 
			if (judgePrime(i)) {
				DFS(i, 1, ++countAmt[1]);
			}
		} 
		
		scanf("%d", &T);
		// 将T维的纯素数全部输出 
		for (i = 1; i <= countAmt[T]; i++) {
			printf("%d\n", purePrimes[T][i]); 
		}
	} 
	
	return 0;
} 

/* 
深度搜索与x有关的更高维的纯素数 
x表示当前维的纯素数,dimen表示维度,count表示当前维度的第几个 
*/
void DFS(int x, int dimen, int count) {
	int i = 0;
	
	if (dimen > 8) {// 递归出口 
		return ;
	} 
	
	purePrimes[dimen][count] = x;// 第dimen维的第count个纯素数为x 
	for (i = 1; i < 10; i++) {
		// 由于x是纯素数,则若10*x+i是素数,那么10*x+i也是纯素数
		// 这样就实现了对更高维纯素数的搜素 
		if (judgePrime(10 * x + i)) {
			DFS(10 * x + i, dimen + 1, ++countAmt[dimen + 1]);
		}
	}
} 

// 判断素数 
int judgePrime(int n) {
	int i = 2;
	
	if (n == 1)
		return 0;
		
	if (n == 2)
		return 1;
	
	for (i = 2; i <= sqrt(n); i++) {
		if (n % i == 0)
			return 0;
	}
	
	return 1;
}

看了这个深度优先搜索得到纯素数的思想,真是令我叹为观止,大佬大佬
转载于这个大佬

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值