49 我素故我在
作者: xxx时间限制: 1S章节: 深度优先搜索
问题描述 :
有这样一种素数叫纯素数(YY出来的名字),当它是一个多位数的时候,你把它的末位去掉之后余下的数依然是一个素数。比如说2393,2393
本身是一个素数,它的末位去掉之后,余下的是239。239 是一个素数,它的末位去掉之后,余下的是23
。23是一个素数,它的末位去掉之后,余下的是2 。2依然还是一个素数。纯素数的长度叫做“维”。2393
是一个4维素数。3797也是一个4维素数。 输入说明 :第一行先给出一共有多少组数据N(N<=1000),接下来有N组数据.
每组包括一个整数T(1<=T<=8)。
输出说明 :
按照从小到大的顺序输出所有的T维纯素数。 输入范例 : 3 8 1 4 输出范例 : 23399339 29399999
37337999 59393339 73939133 2 3 5 7 2333 2339 2393 2399 2939 3119 3137
3733 3739 3793 3797 5939 7193 7331 7333 7393
知道题目要用深度优先,但是我还是用错了……我最开始想的是用深度优先判断纯素数,而不是搜索纯素数
代码:
/*
T49 我素故我在
算法概述:由于3维的纯素数一定与2维有关,4维的纯素数一定与3维
有关,以此类推。所以可以先将8维和以下的纯素数通过深度优先搜索
的方法求出并存起来,输入的时候直接问数组就好了
*/
#include<stdio.h>
int purePrimes[10][100];// 存放所有的纯素数,如nums[1][2]表示的是一维的第二个纯素数
int countAmt[100];// 存放某维纯素数的个数
int judgePrime(int n);
void DFS(int x, int dimen, int count);
int main() {
int N = 0;
int T = 0;
int i = 0;
scanf("%d", &N);
while (N--) {
// 先将所有的纯素数求出来
for (i = 2; i < 10; i++) {
if (judgePrime(i)) {
DFS(i, 1, ++countAmt[1]);
}
}
scanf("%d", &T);
// 将T维的纯素数全部输出
for (i = 1; i <= countAmt[T]; i++) {
printf("%d\n", purePrimes[T][i]);
}
}
return 0;
}
/*
深度搜索与x有关的更高维的纯素数
x表示当前维的纯素数,dimen表示维度,count表示当前维度的第几个
*/
void DFS(int x, int dimen, int count) {
int i = 0;
if (dimen > 8) {// 递归出口
return ;
}
purePrimes[dimen][count] = x;// 第dimen维的第count个纯素数为x
for (i = 1; i < 10; i++) {
// 由于x是纯素数,则若10*x+i是素数,那么10*x+i也是纯素数
// 这样就实现了对更高维纯素数的搜素
if (judgePrime(10 * x + i)) {
DFS(10 * x + i, dimen + 1, ++countAmt[dimen + 1]);
}
}
}
// 判断素数
int judgePrime(int n) {
int i = 2;
if (n == 1)
return 0;
if (n == 2)
return 1;
for (i = 2; i <= sqrt(n); i++) {
if (n % i == 0)
return 0;
}
return 1;
}
看了这个深度优先搜索得到纯素数的思想,真是令我叹为观止,大佬大佬
转载于这个大佬