1 Huffuman树
作者: Turbo时间限制: 1S章节: 基本练习(数组)
问题描述 :
Huffman树在编码中有着广泛的应用。在这里,我们只关心Huffman树的构造过程。 给出一列数{pi}={p0, p1, …,
pn-1},用这列数构造Huffman树的过程如下:
1. 找到{pi}中最小的两个数,设为pa和pb,将pa和pb从{pi}中删除掉,然后将它们的和加入到{pi}中。这个过程的费用记为pa + pb。
2. 重复步骤1,直到{pi}中只剩下一个数。 在上面的操作过程中,把所有的费用相加,就得到了构造Huffman树的总费用。 本题任务:对于给定的一个数列,现在请你求出用该数列构造Huffman树的总费用。例如,对于数列{pi}={5, 3, 8, 2, 9},Huffman树的构造过程如下:
1. 找到{5, 3, 8, 2, 9}中最小的两个数,分别是2和3,从{pi}中删除它们并将和5加入,得到{5, 8, 9, 5},费用为5。
2. 找到{5, 8, 9, 5}中最小的两个数,分别是5和5,从{pi}中删除它们并将和10加入,得到{8, 9, 10},费用为10。
3. 找到{8, 9, 10}中最小的两个数,分别是8和9,从{pi}中删除它们并将和17加入,得到{10, 17},费用为17。
4. 找到{10, 17}中最小的两个数,分别是10和17,从{pi}中删除它们并将和27加入,得到{27},费用为27。
5. 现在,数列中只剩下一个数27,构造过程结束,总费用为5+10+17+27=59。 输入说明 :输入的第一行包含一个正整数n(n<=100)。 接下来是n个正整数,表示p0, p1, …, pn-1,每个数不超过1000。 输出说明
:输出用这些数构造Huffman树的总费用。 输入范例 : 5 5 3 8 2 9 输出范例 : 59
代码:
/*
T1 Huffuman树
算法概述:先排序。每次找两个最小的数,把其中一个置为两数之和,并累加这个和值,
另一个数置为-1,然后再排序,重复操作,直到只剩下一个数。
*/
#include<stdio.h>
#define MAX_SIZE 105
void sort(int p[], int n);
int main() {
int n = 0;
int i = 0;
int fee = 0;// 费用
int p[MAX_SIZE];
scanf("%d", &n);
for (i = 0; i < n; i++)
scanf("%d", &p[i]);
sort(p, n);
while (n > 1) {
fee += (p[0] + p[1]);// 累加费用
p[1] = p[0] + p[1],
p[0] = p[n - 1];
n--;
sort(p, n);
}
printf("%d\n", fee);
return 0;
}
void sort(int p[], int n) {
int i = 0, j = 0;
int temp = 0;
for (i = n - 1; i > 0; i--) {
for (j = 0; j < i; j++) {
if (p[j] > p[j + 1]) {
temp = p[j];
p[j] = p[j + 1];
p[j + 1] = temp;
}
}
}
}