题目:
题意:
给出由S和G字符组成的序列,允许最多交换一次两个字符的操作,求最长的连续的G序列的长度。
思路:
求出每个序列的前缀连续G序列的长度和后缀连续G序列的长度。并且求出每个序列的前缀G的个数和后缀前序G的个数。
然后对序列进行挨个遍历。求出sum=每个序列的前一序列的前缀连续G的长度和后一序列的后缀连续G的长度。然后判定当前字符是G还是S。
(1)若是G,则直接sum+1;
(2)若为S,看看前缀-1或者后缀+1连续序列是否有比总的前缀序列小或总的后缀小的,如果有则sum+1;若没有上述情况,如果有相等的话,则等于sum。
代码如下:
#include <bits/stdc++.h>
using namespace std;
const int maxn=1e5+5;
char s[maxn];
int ispr[maxn],ispo[maxn];
int Pr[maxn],Po[maxn];
int n;
int main()
{
scanf("%d",&n);
scanf("%s",s+1);
ispr[0]=ispo[n+1]=Pr[0]=Po[n+1]=0;
for (int i=1;i<=n;i++)
{
if(s[i]=='G')
{
Pr[i]=Pr[i-1]+1;
ispr[i]=ispr[i-1]+1;
}
else
{
Pr[i]=Pr[i-1];
ispr[i]=0;
}
}
for (int i=n;i>=1;i--)
{
if(s[i]=='G')
{
Po[i]=Po[i+1]+1;
ispo[i]=ispo[i+1]+1;
}
else
{
Po[i]=Po[i+1];
ispo[i]=0;
}
}
int ans=0;
for (int i=1;i<=n;i++)
{
int sum=0;
sum=ispr[i-1]+ispo[i+1];
if(s[i]=='G')
{
ans=max(ans,sum+1);
}
else
{
if(ispr[i-1]<Pr[i-1]||ispo[i+1]<Po[i+1])
{
ans=max(ans,sum+1);
}
else if(ispr[i-1]==Pr[i-1]||ispo[i+1]==Po[i+1])
{
ans=max(ans,sum);
}
}
}
printf("%d\n",ans);
return 0;
}