数据结构----图(略)

图概念

图是由顶点集合及顶点间的关系组成的一种数据结构:G = (V, E)
其中:

  • 顶点集合V = {x|x属于某个数据对象集}是有穷非空集合;
  • E = {(x,y)|x,y属于V}或者E = {<x, y>|x,y属于V && Path(x, y)}是顶点间关系的有穷集合,也叫做边的集合
  • (x, y)表示x到y的一条双向通路,即(x, y)是无方向的
  • Path(x, y)表示从x到y的一条单向通路,即Path(x, y)是有方向的

其他概念:

  • 顶点和边:图中结点称为顶点,第i个顶点记作vi。两个顶点vi和vj相关联称作顶点vi和顶点vj之间有一条边,图中的第k条边记作ek,ek = (vi,vj)或<vi,vj>
  • 有向图和无向图:在有向图中,顶点对<x, y>是有序的,顶点对<x,y>称为顶点x到顶点y的一条边(弧),<x, y>和<y, x>是两条不同的边,在无向图中,顶点对(x, y)是无序的,顶点对(x,y)称为顶点x和顶点y相关联的一条边,这条边没有特定方向,(x, y)和(y,x)是同一条边,注意:无向边(x, y)等于有向边<x, y>和<y, x>
  • 完全图:在有n个顶点的无向图中,若有n * (n-1)/2条边,即任意两个顶点之间有且仅有一条边,则称此图为无向完全图;在n个顶点的有向图中,若有n * (n-1)条边,即任意两个顶点之间有且仅有方向相反的边,则称此图为有向完全图
    在这里插入图片描述
  • 邻接顶点:在无向图中G中,若(u, v)是E(G)中的一条边,则称u和v互为邻接顶点,并称边(u,v)依附于顶点u和v;在有向图G中,若<u, v>是E(G)中的一条边,则称顶点u邻接到v,顶点v邻接自顶点u,并称边<u, v>与顶点u和顶点v相关联
  • 顶点的度:顶点v的度是指与它相关联的边的条数,记作deg(v)。在有向图中,顶点的度等于该顶点的入度与出度之和,其中顶点v的入度是以v为终点的有向边的条数,记作indev(v);顶点v的出度是以v为起始点的有向边的条数,记作outdev(v)。因此:dev(v) = indev(v) + outdev(v)。注意:对于无向图,顶点的度等于该顶点的入度和出度,即dev(v) = indev(v) = outdev(v)
  • 路径:在图G = (V, E)中,若从顶点vi出发有一组边使其可到达顶点vj,则称顶点vi到顶点vj的顶点序列为从顶点vi到顶点vj的路径。
  • 路径长度:对于不带权的图,一条路径的路径长度是指该路径上的边的条数;对于带权的图,一条路径的路径长度是指该路径上各个边权值的总和
  • 简单路径与回路:若路径上各顶点v1,v2,v3,…,vm均不重复,则称这样的路径为简单路径。若路径上第一个顶点v1和最后一个顶点vm重合,则称这样的路径为回路或环
  • 子图:设图G = {V, E}和图G1 = {V1,E1},若V1属于V且E1属于E,则称G1是G的子图
    在这里插入图片描述
  • 连通图:在无向图中,若从顶点v1到顶点v2有路径,则称顶点v1与顶点v2是连通的。如果图中任意一对顶点都是连通的,则称此图为连通图
  • 强连通图:在有向图中,若在每一对顶点vi和vj之间都存在一条从vi到vj的路径,也存在一条从vj到vi的路径,则称此图是强连通图,n个顶点的强连通图最多有n(n-1)条边,最少n条边—图截自百度百科
    在这里插入图片描述
  • 生成树:一个连通图的最小连通子图称作该图的生成树。有n个顶点的连通图的生成树有n个顶点和n-1条边
    在这里插入图片描述

存储结构

邻接表

邻接表:使用数组表示顶点的集合,使用链表表示边的关系


无向图邻接表:

  • 注意:无向图中同一条边在邻接表中出现了两次。如果想知道顶点vi的度,只需要知道顶点vi边链表集合中结点的数目即可在这里插入图片描述

有向图邻接表:

  • 注意:有向图中每条边在邻接表中只出现一次,与顶点vi对应的邻接表所含结点的个数,就是该顶点的出度,也称出度表,要得到vi顶点的入度,必须检测其他所有顶点对应的边链表,看有多少边顶点的dst取值是i在这里插入图片描述

模拟

结构:

template<class W>
struct Edge
{
	int _srci;
	int _dsti;  // 目标点的下标
	W _w;		// 权值
	Edge<W>* _next;

	Edge(int dsti, const W& w)
		:_dsti(dsti)
		, _w(w)
		, _next(nullptr)
	{}
};
template<class V, class W, bool Direction = false>
class Graph
{
	typedef Edge<W> Edge;
public:
	Graph(const V* a, size_t n)
	size_t GetVertexIndex(const V& v)
	void AddEdge(const V& src, const V& dst, const W& w)
	void Print()}
private:
	vector<V> _vertexs;			// 顶点集合
	map<V, int> _indexMap;		// 顶点映射下标
	vector<Edge*> _tables;		// 邻接表
};

实现过程略

邻接矩阵

因为节点与节点之间的关系就是连通与否,即为0或者1,因此邻接矩阵(二维数组)即是:先用一个数组将定点保存,然后采用矩阵来表示节点与节点之间的关系


有向带权值:

  • 在这里插入图片描述

无向不带权值:

  • 在这里插入图片描述

注意

  1. 无向图的邻接矩阵是对称的,第i行(列)元素之和,就是顶点i的度。有向图的邻接矩阵则不一定是对称的,第i行(列)元素之后就是顶点i 的出(入)度
  2. 如果边带有权值,并且两个节点之间是连通的,上图中的边的关系就用权值代替,如果两个顶点不通,则使用无穷大代替
  3. 用邻接矩阵存储图的有点是能够快速知道两个顶点是否连通,缺陷是如果顶点比较多,边比较少时,矩阵中存储了大量的0成为系数矩阵,比较浪费空间,并且要求两个节点之间的路径不是很好求

模拟

结构:

// V:顶点类型,W:权, W MAX_W非类型模板参数
template<class V, class W, W MAX_W = INT_MAX, bool Direction = false>
class Graph
{
	typedef Graph<V, W, MAX_W, Direction> Self;
public:
	Graph() = default;//编译器自动生成默认构造函数	
	Graph(const V* a, size_t n)
	size_t GetVertexIndex(const V& v)
	void _AddEdge(size_t srci, size_t dsti, const W& w)
	void AddEdge(const V& src, const V& dst, const W& w)
	void Print()
private:
	vector<V> _vertexs;			// 顶点集合
	map<V, int> _indexMap;		// 顶点映射下标
	vector<vector<W>> _matrix;  // 邻接矩阵
};

操作实现略
为了方便,下面的算法都使用邻接矩阵

遍历

BFS

类似于:
在这里插入图片描述


过程略:利用队列

void BFS(const V& src)
{
	size_t srci = GetVertexIndex(src);
	vector<bool> visited(_vertexs.size(),false);
	queue<size_t> q;
	q.push(srci);
	visited[srci] = true;

	int n = _vertexs.size();
	int level = 1;
	while (!q.empty())
	{
		for (int i = 0; i < level; i++)
		{	
			
			int front = q.front();
			q.pop();
			cout << front << ":" << _vertexs[front] << " ";

			for (int j = 0; j < n; j++)
			{
				if (_matrix[front][j] != MAX_W && visited[j]==false)
				{
					q.push(j);
					visited[j] = true;
				}
			}
		}
		level = q.size();
	}
}

在这里插入图片描述

DFS

类似于:
在这里插入图片描述


递归,注意:对于非连通图,需要再次查看是否还有visited[i]==false的有效节点
visited数组防止回退时重复访问

void _DFS(size_t srci, vector<bool>& visited)
{
	visited[srci] = true;
	int n = _vertexs.size();
	cout << srci << ":" << _vertexs[srci] << " ";
	for (int i = 0; i < n; i++)
	{
		if (_matrix[srci][i] != MAX_W && visited[i] == false)
		{
			_DFS(i, visited);
		}
	}
}
void DFS(const V& src)
{
	size_t srci = GetVertexIndex(src);
	vector<bool> visited(_vertexs.size(), false);
	_DFS(srci, visited);
	//注意:对于非连通图,需要再次查看是否还有visited[i]==false的有效节点
	for (int i = 0; i < visited.size(); i++)
	{
		if (visited[i] == false)
			_DFS(i,visited);
	}
}

在这里插入图片描述

应用(邻接矩阵实现)

最小生成树

连通图中的每一棵生成树,都是原图的一个极大无环子图,即:从其中删去任何一条边,生成树就不在连通;反之,在其中引入任何一条新边,都会形成一条回路。若连通图由n个顶点组成,则其生成树必含n个顶点和n-1条边。因此构造最小生成树的准有三条:

  1. 只能使用图中的边来构造最小生成树
  2. 只能使用恰好n-1条边来连接图中的n个顶点
  3. 选用的n-1条边不能构成回路

构造最小生成树的方法:Kruskal算法和Prim算法。这两个算法都采用了逐步求解的贪心策略
贪心算法:是指在问题求解时,总是做出当前看起来最好的选择。也就是说贪心算法做出的不是整体最优的的选择,而是某种意义上的局部最优解。贪心算法不是对所有的问题都能得到整体最优解


注意:两个算法都需要一个struct Edge来表示边

struct Edge
{
	size_t _srci;
	size_t _dsti;
	W _w;
	Edge(size_t srci, size_t dsti, const W& w)
		:_srci(srci)
		, _dsti(dsti)
		, _w(w)
	{}
	bool operator>(const Edge& e) const
	{
		return _w > e._w;
	}
};

Kruskal

任给一个有n个顶点的连通网络N={V,E}:

  • 首先构造一个由这n个顶点组成、不含任何边的图G={V,NULL},其中每个顶点自成一个连通分量
  • 其次不断从E中取出权值最小的一条边(若有多条任取其一),若该边的两个顶点来自不同的连通分量,则将此边加入到G中。如此重复,直到所有顶点在同一个连通分量上为止。

核心:每次迭代时,选出一条具有最小权值,且两端点不在同一连通分量上的边,加入生成树在这里插入图片描述
思路:

  • 使用一个priority_queue来存储所有边,大堆,最小元素在顶部
  • 在构建minTree时要判断是否成环(复用并查集)
  • 当边为n-1时成功退出返回总权值
  • 注意:为防止a->b 又出现b->a的情况,只选取一半的情况(i<j)

代码:

W Kruskal(Self& minTree)
{
	size_t n = _vertexs.size();
	minTree._vertexs = _vertexs;
	minTree._indexMap = _indexMap;
	minTree._matrix = _matrix;
	for (int i = 0; i < n ;i++)
	{
		_matrix[i].resize(n, MAX_W);
	}

	priority_queue<Edge, vector<Edge>, greater<Edge>> minqueue;
	for (int i = 0; i < n; i++)
	{
		for (int j = 0; j < n; j++)
		{
			if (minTree._matrix[i][j] != MAX_W && i < j)//i<j(为防止a->b 又出现b->a的情况,只选取一半的情况)
			{
				//AddEdge(_vertexs[i],_vertexs[j],_matrix[i][j]);
				minqueue.push(Edge(i, j, _matrix[i][j]));
			}
		}
	}
	int size = 0;//n个节点 要有n-1条边
	W totalW = W();//总的权值
	UnionFindSet ufs(n);
	while (!minqueue.empty())
	{
		Edge min = minqueue.top();
		minqueue.pop();
		if (!ufs.IsInSet(min._srci, min._dsti))
		{
			cout << _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;
			ufs.Union(min._srci, min._dsti);
			size++;
			minTree._AddEdge(min._srci, min._dsti,min._w);
			totalW += min._w;
		}
		else//成环
		{
			cout <<"huan  "<< _vertexs[min._srci] << "->" << _vertexs[min._dsti] << ":" << min._w << endl;
		}

	}
	if (size == n - 1)
	{
		return totalW;//找到了最小生成树
	}
	else
	{
		return W();//返回缺省值
	}
}

在这里插入图片描述

Prim

这里是引用
仍然利用优先队列

  • 两个集合X,Y,X起点边集合(true表示有false无) Y终点边集合(true表示有false无)
  • 将所有以srci为起点的边压入优先队列minqueue
  • 反复将上一次选边的终点作为起点,将所有以_dsti为起点的边继续压入minqueue,Y[i]保证无重复边
  • 注意判环:终点不在Y集合中

代码:

W Prim(Self& minTree, const W& src)
{	//初始化最小生成树
	size_t n = _vertexs.size();
	minTree._vertexs = _vertexs;
	minTree._indexMap = _indexMap;
	minTree._matrix = _matrix;
	for (int i = 0; i < n; i++)
	{
		_matrix[i].resize(n, MAX_W);
	}

	vector<bool> X(n, false);//起点边集合(true表示有false无)
	vector<bool> Y(n, true);//终点边集合(true表示有false无)
	size_t srci = GetVertexIndex(src);
	X[srci] = true;
	Y[srci] = false;

	//将所有以srci为起点的边压入优先队列minqueue
	priority_queue<Edge, vector<Edge>, greater<Edge>> minqueue;
	for (size_t i = 0; i < n; i++)
	{
		if (_matrix[srci][i] != MAX_W)
		{
			minqueue.push(Edge(srci, i, _matrix[srci][i]));//将与srci顶点相连的边加入优先队列
		}
	}

	cout << "Prim选边"<<endl;
	size_t size = 0;// size=n-1 选完退出
	size_t totalW = W();//边的总权值
	while (!minqueue.empty())
	{
		Edge top = minqueue.top();
		minqueue.pop();
		if (Y[top._dsti])//_dsti在终点集合中
		{
			minTree._AddEdge(top._srci, top._dsti, top._w);
			cout<< _vertexs[top._srci] << "->" << _vertexs[top._dsti] << ":" << top._w << endl;
			Y[top._dsti] = false;
			X[top._dsti] = true;//_dsti加入起点集合
			
			totalW += _matrix[top._srci][top._dsti];
			size++;
			if (size == n - 1)
				break;

			//将所有以_dsti为起点的边继续压入minqueue,Y[i]保证无重复边
			for (size_t i = 0; i < n; i++)
			{
				if (_matrix[top._dsti][i] != MAX_W && Y[i])//Y[i]=true,i在终点集合 为真
				{
					minqueue.push(Edge(top._dsti, i, _matrix[top._dsti][i]));
				}
			}
		}
		else if(X[top._dsti])//_dsti在起点集合中,构成环
		{
			cout <<"构成环:"<< _vertexs[top._srci] << "->" << _vertexs[top._dsti] << ":" << top._w << endl;
		}
	}
	cout << endl << endl;
	if (size = n - 1)
		return totalW;
	else
		return W();
}

这里是引用

有向无环图应用(MARK之后补)

拓扑排序

关键路径

最短路径

最短路径问题:从在带权有向图G中的某一顶点出发,找出一条通往另一顶点的最短路径,最短也就是沿路径各边的权值总和达到最小

Dijkstra(单源最短路径)

在这里插入图片描述
单源最短路径问题:给定一个图G = ( V , E ) G=(V,E)G=(V,E),求源结点s ∈ V s∈Vs∈V到图中每个结点v ∈ V v∈Vv∈V的最短路径。Dijkstra算法就适用于解决带权重的有向图上的单源最短路径问题,同时算法要求图中所有边的权重非负。一般在求解最短路径的时候都是已知一个起点和一个终点,所以使用Dijkstra算法求解过后也就得到了所需起点到终点的最短路径

  • 针对一个带权有向图G,将所有结点分为两组S和Q,S是已经确定最短路径的结点集合,在初始时为空(初始时就可以将源节点s放入,毕竟源节点到自己的代价是0),Q 为其余未确定最短路径的结点集合,每次从Q 中找出一个起点到该结点代价最小的结点u ,将u 从Q 中移出,并放入S中,对u 的每一个相邻结点v 进行松弛操作。松弛即对每一个相邻结点v ,判断源节点s到结点u的代价与u 到v 的代价之和是否比原来s 到v 的代价更小,若代价比原来小则要将s 到v 的代价更新为s 到u 与u 到v 的代价之和,否则维持原样。如此一直循环直至集合Q 为空,即所有节点都已经查找过一遍并确定了最短路径,至于一些起点到达不了的结点在算法循环后其代价仍为初始设定的值,不发生变化。Dijkstra算法每次都是选择V-S中最小的路径节点来进行更新,并加入S中,所以该算法使用的是贪心策略。

代码

void Dijkstra(const V& src, vector<W>& dist, vector<int>& pPath)//dijkstra只能用于非负权值
{
	size_t srci = GetVertexIndex(src);
	size_t n = _vertexs.size();
	dist.resize(n, MAX_W);
	pPath.resize(n, -1);
	dist[srci] = 0;//起点到自己权值为0 
	pPath[srci] = srci;//存父顶点下标,方便打印路径

	vector<bool> S(n, false);//最短路径的顶点集合S:(S[i]==true),Q未确认最短路径的集合(S[i]==false)
	for (int i = 0; i < n; i++)
	{
		W min = MAX_W;
		int u = 0;每次从Q(S[i]==false)中找出一个起点到该结点代价最小的结点u
		for (int j = 0; j < n; j++)
		{
			//在dist中选出最小的作为起点(在S[j]==false中的选,所以min在i的循环中每次要重置)
			if (S[j] == false && dist[j] < min)
			{
				u = j;//注意:第一次其实选出来的就是srci源顶点
				min = dist[j];
			}
		}
		S[u] = true;//S:(S[i]==true)
		for (int v = 0; v < n; v++)//u的所有相邻节点
		{
			//松弛更新u连接顶点v  (srci->u + u->v) <  (srci->v) 更新
				if (_matrix[u][v] != MAX_W && S[v] == false && dist[u] + _matrix[u][v] < dist[v])
			{
				dist[v] = dist[u] + _matrix[u][v];
				pPath[v] = u;
			}
		}
	}
}

在这里插入图片描述


Dijkstra算法存在的问题是不支持图中带负权路径,如果带有负权路径,则可能会找不到一些路径的最短路径
案例测试:
在这里插入图片描述
在这里插入图片描述
s->t->y的最短路径没有更新出来

Bellman-Ford(单源最短路径)

Dijkstra算法只能用来解决正权图的单源最短路径问题,bellman—ford算法可以解决负权图的单源最短路径问题。

  • 它的优点是可以解决有负权边的单源最短路径问题,而且可以用来判断是否有负权回路
  • 它的缺点:时间复杂度 O(N*E) (N是点数,E是边数)普遍是要高于Dijkstra算法O(N²)的。如果我们使用邻接矩阵实现,那么遍历所有边的数量的时间复杂度就是O(N^3),这里也可以看出来Bellman-Ford就是一种暴力求解更新

和Dijsktra一样需要dist和pPath数组,暴力搜索:遍历
注意:总体最多更新n-1轮(只要一轮进行了更新,后一轮就一定要继续(可能会影响其他路径)),如果不进行后一轮更新,只会看到正确的路径,但是错误的权值,n-1:有n个点,若求a到b的最短路径,至多经过n-1个点(不能是回路)

  • 例如:选择x->t:-2, 可以使s-> t新得到更短路径,但是s->t->z权值没更新,权值和路径对不上,再更新一次就修正了但是新更新路径又可能会影响其他路径,所以还要继续更新,最多更新n轮
  • 优化:如果这个轮次中没有更新出更短路径,那么后续轮次就不需要再走了(对其他路径无影响了),添加标志位
bool BellmanFord(const V& src, vector<W>& dist, vector<int>& pPath)
{
	int n = _vertexs.size();
	int srci = GetVertexIndex(src);
	// vector<W> dist,记录srci-其他顶点最短路径权值数组
	dist.resize(n, MAX_W);
	// vector<int> pPath 记录srci-其他顶点最短路径父顶点数组
	pPath.resize(n, -1);
	// 先更新srci->srci为缺省值
	dist[srci] = W();
	pPath[srci] = 0;
	// 总体最多更新n轮(只要一轮进行了更新,后一轮就一定要继续(可能会影响其他路径))
	for (int k = 0; k < n-1; k++)
	{
		// i->j 更新松弛
		bool mark = false;
		for (int i = 0; i < n; i++)
		{
			for (int j = 0; j < n; j++)
			{
				if (_matrix[i][j] != MAX_W && dist[i] + _matrix[i][j] < dist[j])
				{
					dist[j] = dist[i] + _matrix[i][j];
					pPath[j] = i;
					mark = true;
				}	
			}
		}
		// 如果这个轮次中没有更新出更短路径,那么后续轮次就不需要再走了(对其他路径无影响了)
		if (mark == false)
			break;
	}
	return true;
}

对于负权回路,返回false(负权回路会无限更新:例子s->s每次-1到无穷小)
在返回true前判断一下,只要之后还能更新就是带负权回路:

for (int i = 0; i < n; i++)
{
	for (int j = 0; j < n; j++)
	{
		if (_matrix[i][j] != MAX_W && dist[i] + _matrix[i][j] < dist[j])//如果还能更新
			return false;
			
	}
}
SPFA优化 (MARK待补充)

Floyd-Warshall(多源最短路径)(MARK关于DP三维转二维未理解,略写)

参考文章:数据结构(五)图—最短路径(弗洛伊德算法)


Floyd-Warshall算法是解决任意两点间的最短路径的一种算法。Floyd算法考虑的是一条最短路径的中间节点,即简单路径p={v1,v2,…,vn}上除v1和vn的任意节点

  • 设k是p的一个中间节点,那么从i到j的最短路径p就被分成i到k和k到j的两段最短路径p1,p2。p1是从i到k且中间节点属于{1,2,…,k-1}取得的一条最短路径。p2是从k到j且中间节点属于{1,2,…,k-1}取得的一条最短路径
  • Floyd算法本质是三维动态规划,D[i][j][k]表示从点i到点j只经过0到k个点最短路径,然后建立起转移方程,然后通过空间优化,优化掉最后一维度,变成一个最短路径的迭代算法,最后即得到所以点的最短路

代码

void FloydWarshall(vector<vector<W>>& vvDist, vector<vector<int>>& vvpPath)
{
	//初始化二维矩阵
	size_t n = _vertexs.size();
	vvDist.resize(n);
	vvpPath.resize(n);
	for (int i = 0; i < n; i++)
	{
		vvDist[i].resize(n, MAX_W);
		vvpPath[i].resize(n, -1);
	}
	//从_matrix中更新相连的边到vvDist
	for (int i = 0; i < n; i++)
	{
		for (int j = 0; j < n; j++)
		{
			if (_matrix[i][j] != MAX_W)
			{
				vvDist[i][j] = _matrix[i][j];
				vvpPath[i][j] = i;//i->j父顶点为i
			}
			if (i == j)
			{
				vvDist[i][j] = W();//自己到自己的权值为0
			}
		}
	}
	//更新最短路径
	for (int k = 0; k < n; k++)//i->k->j k可以为其他任意n-2个顶点
	{
		//size_t k;//可以为其他任意n-2个顶点,但i,j可以为任意两个顶点,所以还是要遍历k次(若k与i,j重合,反正自己到自己的权值为0)
		for (int i = 0;i < n; i++)
		{
			for (int j = 0; j < n; j++)
			{
				if (vvDist[i][k] != MAX_W && vvDist[k][j] != MAX_W && vvDist[i][k] + vvDist[k][j] < vvDist[i][j])
				{
					vvDist[i][j] = vvDist[i][k] + vvDist[k][j];
					vvpPath[i][j] = vvpPath[k][j];//注意这里不应该是vvpPath[i][j]=k 因为可能是i->...->k->x->j的情况,当k为j的父节点的时候vvpPath[k][j]为k
				}
			}
		}
	}
	//打印方便观看可省///
	for (size_t i = 0; i < n; ++i)
	{
		for (size_t j = 0; j < n; ++j)
		{
			if (vvDist[i][j] == MAX_W)
			{
				//cout << "*" << " ";
				printf("%3c", '*');
			}
			else
			{
				//cout << vvDist[i][j] << " ";
				printf("%3d", vvDist[i][j]);
			}
		}
		cout << endl;
	}
	cout << endl;

	for (size_t i = 0; i < n; ++i)
	{
		for (size_t j = 0; j < n; ++j)
		{
			//cout << vvParentPath[i][j] << " ";
			printf("%3d", vvpPath[i][j]);
		}
		cout << endl;
	}
	cout << "=================================" << endl;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值