R语言| 缺失值判断

本文介绍了在R语言中如何判断数据集的缺失值,包括使用is.na()和complete.cases()函数,并探讨了缺失值模型的判断,如完全随机缺失、随机缺失和完全非随机缺失。通过md.pattern()、aggr()和marginplot()等函数进行缺失模式分析,帮助理解数据缺失的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

缺失值判断

一、缺失值判断
通常用“NA"表示,判断数据是否存在缺失值的常用方法

  1. 使用函数is.na( )
    使用函数is.na( ),该函数是判断缺失值的最基本的函数。可以用于判断不同的数据对象,如向量、列表和数据框.
    其函数的基本书写格式为:is.na( x )
    判断数据集中是否存在缺失值,如果存在,返回 TRUE ; 如果不存在,则返回FALSE
    例:
>library(DMwR)
>data("algae")
>sum(is.na(algae))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值