计算机视觉
文章平均质量分 76
平什么阿
这个作者很懒,什么都没留下…
展开
-
计算机视觉(一)——形态学操作:腐蚀、膨胀、开闭运算、形态学梯度、顶帽与黑帽
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录形态学操作的概念一、腐蚀和膨胀二、使用步骤1.引入库2.读入数据总结形态学操作的概念形态学:即数学形态学,图像处理过程中一个非常重要的研究方法。形态学主要从图像内部提取分量信息,该分量信息通常对于表达和描绘图像的特征具有重要意义,通常是图像理解时所使用的最本质的形状特征。形态学处理在视觉检测、文字识别、医学图形处理、图像压缩编码领域都有非常重要的作用。形态学操作主要包含: 腐蚀、膨胀、开运算、闭运算、形态学梯度运算、顶帽原创 2021-03-27 21:19:13 · 30814 阅读 · 6 评论 -
史上第二简单的WGAN的pytorch实现
文章目录1. GAN的缺点2. WGAN的改进3. 实验效果4. 完整代码1. GAN的缺点上一篇讲了GAN,其实代码中展示的那种生成器G的表达式,有一个很大的缺点,就是梯度消失严重。其实除了上一篇文章写的那种表达式,还有另一种方法,但是第二种方法也面临梯度不稳定和模式崩塌的问题。具体原因建议移步哔哩哔哩找李宏毅老师。基础GAN的生成器和判别器损失迭代10000次数据如下面几张图所示。判别器一开始分数很高接近1,因为他能很轻易分辨,生成器一开始分数很低,因为很难生成符合条件的分布。但是随着迭代次数不原创 2021-11-04 22:27:54 · 3183 阅读 · 1 评论 -
计算机视觉(二)——HSV色彩分离及目标跟踪
HSV是根据颜色的直观特性由A.R.Smith在1978年创造的一种颜色空间,也称六角锥体模型。这个模型中颜色的参数分别是:色调(H)、饱和度(S)、明度(V)。HSV比传统的RGB颜色空间更能准确的感知颜色,并仍保持在计算上的简单。 HSV色彩分离的基本步骤为:转换HSV表示,设定目标阈值,设置掩膜,过滤目标颜色。文章目录一、RGB颜色模型二、HSV颜色模型1.颜色模型2.转换算法三、掩膜四、HSV颜色分离代码实现(python)1.引入库2.导入原视频3.将原视频转换到hsv颜色空间4.求得原创 2021-03-29 22:36:02 · 16610 阅读 · 8 评论 -
计算机视觉 —— 利用python生成OCR手写数据集
最近参加了一个OCR手写数据集识别的比赛,为了对训练数据进行扩充(包括日期和金额两部分),记录一下生成手写图像的方法。导入库import timefrom random import choice, randint, randrangefrom PIL import Image, ImageDraw, ImageFont字符集# 图片文字的字符集characters = '拾伍佰正仟万捌贰整陆玖圆叁零角分肆柒亿壹元'选取文字函数def selectedCharacters(length原创 2021-11-21 23:26:24 · 3199 阅读 · 0 评论