(组合数学笔记)拆分数各类定义及公式总结

本文探讨了拆分数的概念,包括无序和有序拆分,以及拆分的数学表示。介绍了拆分函数的特殊性质和递推关系,并讨论了完备拆分的概念及其计算公式。通过定理展示了拆分数的上界和逼近公式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一些定义

  • 拆分数:
    n , r ∈ Z + , n, r\in\mathbb{Z}^+, n,rZ+, 如果正整数 n 1 , n 2 , ⋯   , n r n_1,n_2,\cdots,n_r n1,n2,,nr满足 n = n 1 + n 2 + ⋯ + n r (1) n=n_1+n_2+\cdots+n_r\tag{1} n=n1+n2++nr(1)则称 ( 1 ) (1) (1)为正整数 n n n的一个 r r r拆分 n k n_k nk称为拆分的 k k k个部分
  • 完备拆分数:
    n ∈ Z + , π ( n ) = n 1 , n 2 , ⋯ ∈ Π ( n ) n\in\mathbb{Z}^+, \pi(n)={n_1, n_2, \cdots}\in\Pi(n) nZ+,π(n)=n1,n2,Π(n),如果对于满足 1 ⩽ m < n 1\leqslant m < n 1m<n的任何正整数 m m m,拆分 π ( n ) \pi(n) π(n)中恰有一个子集 { n j 1 , n j 2 , ⋯   } \left\{n_{j1}, n_{j2}, \cdots \right\} {nj1,nj2,} m m m的一个拆分,即 π ( m ) = { n j 1 , n j 2 , ⋯   } ∈ Π ( m ) \pi(m)=\left\{n_{j1}, n_{j2}, \cdots \right\}\in\Pi(m) π(m)={nj1,nj2,}Π(m),则称 π ( n ) \pi(n) π(n)是正整数 n n n的一个完备拆分,记为 π ⟨ n ⟩ \pi\lang n \rang πn,并以 ∣ π ⟨ n ⟩ ∣ |\pi\lang n \rang| πn表示完备拆分 π ⟨ n ⟩ \pi\lang n \rang πn的部分数。

符号表示

符号描述符号描述
∏ r ( n ) \prod_r(n) r(n) n n n r r r无序拆分集 ∏ ( n ) \prod(n) (n) n n n的无序拆分集
∏ r [ n ] \prod_r[n] r[n] n n n r r r有序拆分集 ∏ [ n ] \prod[n] [n] n n n的有序拆分集
p r ( n ) p_r(n) pr(n) n n n的无序 r r r拆分数 p ( n ) p(n) p(n) n n n的无序拆分数
p r [ n ] p_r[n] pr[n] n n n的有序 r r r拆分数 p [ n ] p[n] p[n] n n n的有序拆分数

约定: p 0 ( 0 ) = p 0 [ 0 ] = 1 ; p 0 ( n ) = p 0 [ n ] = 0 , n ⩾ 1 ; p ( 0 ) = p [ 0 ] = 1 p_0(0)=p_0[0]=1; p_0(n)=p_0[n]=0, n \geqslant1; p(0)=p[0]=1 p0(0)=p0[0]=1;p0(n)=p0[n]=0,n1;p(0)=p[0]=1
对所有不满足 n ⩾ r ⩾ 1 , n\geqslant r \geqslant 1, nr1, 约定 p r ( n ) = p r [ n ] = 0 p_r(n)=p_r[n]=0 pr(n)=pr[n]=0

特殊的拆分数

n , r ∈ Z + , n, r\in\mathbb{Z}^+, n,rZ+, p 1 ( n ) = p n ( n ) = p n − 1 ( n ) = 1 , p 2 ( n ) = ⌊ n 2 ⌋ p_1(n)=p_n(n)=p_{n-1}(n)=1, p_2(n)=\lfloor \frac n2 \rfloor p1(n)=pn(n)=pn1(n)=1,p2(n)=2n

两个递推关系

  1. n , r ∈ Z + , n, r\in\mathbb{Z}^+, n,rZ+, 则当 n > r n>r n>r时,有 p r ( n ) = ∑ k = 1 r p k ( n − r ) ; p_r(n)=\sum_{k=1}^r{p_k(n-r)}; pr(n)=k=1rpk(nr);
    另一种表述:设 n , r ∈ Z + , n, r\in\mathbb{Z}^+, n,rZ+, 则有 p r ( n + r ) = ∑ k = 1 r p k ( n ) . p_r(n+r)=\sum_{k=1}^r{p_k(n)}. pr(n+r)=k=1rpk(n).
  2. n , r ∈ Z + , n, r\in\mathbb{Z}^+, n,rZ+, p r ( n ) = ∑ k = 1 ⌊ n r ⌋ p r − 1 ( n − r k + r − 1 ) , n > r ⩾ 2. p_r(n)=\sum_{k=1}^{\lfloor \frac nr\rfloor}{p_{r-1}(n-rk+r-1)}, n>r\geqslant2. pr(n)=k=1rnpr1(nrk+r1),n>r2.

一些定理

  • p ( n ) p(n) p(n)一个宽松上界: p ( n ) < π 6 ( n − 1 ) exp ⁡ ( 2 n 3 π ) p(n)<\frac{\pi}{\sqrt{6(n-1)}}\exp{\left(\sqrt{\frac{2n}{3}}\pi \right)} p(n)<6(n1) πexp(32n π)

  • Hardy-Ramanujan Theorem: p ( n ) ∼ 1 4 n 3 exp ⁡ ( 2 n 3 π ) , n → ∞ p(n)\sim\frac{1}{4n\sqrt3}\exp{\left(\sqrt\frac{2n}{3}\pi\right)}, n\rightarrow\infty p(n)4n3 1exp(32n π),n

  • 完备拆分 p ⟨ n ⟩ p\langle n\rangle pn计算公式
    n ∈ Z + , n \in\mathbb{Z}^+, nZ+, n + 1 = p 1 α 1 p 2 α 2 ⋯ p k α k , n+1=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k}, n+1=p1α1p2α2pkαk, 其中 p 1 , p 2 , ⋯   , p k , p_1, p_2, \cdots, p_k, p1,p2,,pk, 均为素数,令 m = α 1 + α 2 + ⋯ + α k , m=\alpha_1+\alpha_2+\cdots+\alpha_k, m=α1+α2++αk, p ⟨ n ⟩ = ∑ t = 1 m ∑ j = 1 t ( − 1 ) t − j ( t j ) ∏ i = 1 k ( j + α i − 1 α i ) p\lang n \rang=\sum_{t=1}^m\sum_{j=1}^{t}(-1)^{t-j}\binom{t}{j}\prod_{i=1}^{k}\binom{j+\alpha_i-1}{\alpha_i} pn=t=1mj=1t(1)tj(jt)i=1k(αij+αi1)

  • n n n 的完备拆分 π ⟨ n ⟩ \pi\lang n \rang πn 的最小部分数 min ⁡ ∣ π ⟨ n ⟩ ∣ \min|\pi\lang n \rang| minπn
    n ∈ Z + , n\in \mathbb{Z}^+, nZ+, n + 1 = d 1 d 2 ⋯ d t , n+1=d_1d_2\cdots d_t, n+1=d1d2dt, 其中 d 1 , d 2 , ⋯   , d t d_1, d_2, \cdots ,d_t d1,d2,,dt是大于1的正整数,则当 d 1 , d 2 , ⋯   , d t d_1, d_2, \cdots ,d_t d1,d2,,dt均为素数时,完备拆分 π ⟨ n ⟩ \pi\lang n \rang πn的部分数 ∣ π ⟨ n ⟩ ∣ |\pi\lang n \rang| πn取得最小值,即此时有 min ⁡ ∣ π ⟨ n ⟩ ∣ = d 1 + d 2 + ⋯ + d t − t = ∑ i = 1 k α i ( p i − 1 ) . \min|\pi\lang n \rang|=d_1+d_2+\cdots+d_t-t=\sum_{i=1}^{k}\alpha_i(p_i-1). minπn=d1+d2++dtt=i=1kαi(pi1).

  • n n n 的具有最小部分数的完备拆分数 p m i n ⟨ n ⟩ p_{min}\lang n \rang pminn
    p m i n ⟨ n ⟩ = ( α 1 + α 2 + ⋯ + α k ) ! α 1 ! α 2 ! ⋯ α k ! p_{min}\lang n \rang=\frac{(\alpha_1+\alpha_2+\cdots+\alpha_k)!}{\alpha_1!\alpha_2!\cdots\alpha_k!} pminn=α1!α2!αk!(α1+α2++αk)!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zorchp

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值