数学中常用符号、表达式的英文读法小结

写在前面

最近一直在学习《数学专业英语》这门课程,学到了很多数学概念及表述的英文释义,但是对一些基本的数学符号或者表达式等的英文读法还没有一个完整的认识,下面总结一些常见的符号、表达式、缩写、等的英文读法,供大家学习参考。内容大部分参考吴炯圻老师的《数学专业英语(第二版)》1一书P109-111。

P.S. 如果有接触过 LaTeX \LaTeX LATEX的朋友,可能对这些数学符号的英文表达更加熟悉,因为这个排版工具里面大量的数学内容都是对应英文的单词或简写;换言之,学习 LaTeX \LaTeX LATEX和学习数学专业英语之间还有密不可分的联系呢!

运算符

  1. 加法(addition)

    加号( + + +):plus,正数:positive number;例子: a + b a+b a+b读作:a plus b,正数5读作:positive five

  2. 减法(subtraction)

    减号( − - ):minus,负数:negative number;例子: a − b a-b ab读作:a minus b,负数5读作:negative five.

  3. 乘法(multiplication)

    乘号( × \times ×):times,或者multiplied by;例子: a b ab ab a × b a\times b a×b读作:a times ba multiplied by b).

  4. 除法(division,书中此处拼写有误)

    除号( ÷ \div ÷):divided by或者over(作为分数的读法);例子: a ÷ b a\div b a÷b a b \frac ab ba读作:a divided by b或者a over b.

    ★ \bigstar 一些特殊分数的读法:

    1. 1 4 \dfrac14 41读作a quarter 3 4 \dfrac34 43读作three quarters;
    2. 1 2 \dfrac12 21读作a half,或one half
    3. 英文分数的一般读法为: a b \dfrac ab ba读作 a   b t h s a\ b\mathrm{ths} a bths,即三分之二读作two thirds或者two-third
  5. 比例(proportion)

    比(:):读作is to,例如 a    ⁣ : b a\,\colon b a:b读作a is to b或者the ratio of a to b

  6. 乘方(power)

    • x 2 x^2 x2:x squared或者x square
    • x 3 x^3 x3:x cubedx cube
    • x n x^n xn:x to the nth power
  7. 开方(root-extracting)

    • x \sqrt x x :the square root of x
    • x 3 \sqrt[3]x 3x :the cube root of x
    • x n \sqrt[n]x nx :the nth root of x

二元关系

  • 等于: a = b a=b a=b读作a equals ba is equal to ba is b
  • 不等于: a ≠ b a\neq b a=b读作a is not equal to b
  • 恒等于: a ≡ b a\equiv b ab读作a is identical to ba is indentical with b;
  • 约等于: a ≈ b a\approx b ab读作a is approximately equal to b
  • 小(大)于: a < ( > ) b a<(>)b a<(>)b读作a is less(greater) than b;
  • 小(大)于等于: a ⩽ ( ⩾ ) b a\leqslant(\geqslant)b a()b读作a is less(greater) than or equal to b;

缩写(英文,拉丁文)

包括一些数学文献中比较常见的缩写,这里面有由英文构成的,也有一些由拉丁文构成,下面具体介绍。

  • e.g.,表示例如,是拉丁文exempli gratia的缩写;
  • i.e.,表示也就是(即),是拉丁文id est的缩写,英文表达为that is;
  • etc.,表示为等等,是拉丁文et cetera的缩写,多见于正文有多个内容的举例;
  • et al.,同上,表示为等等,是拉丁文et alia的缩写,常见于英文文献中有多个作者时的省略。

其他不太常见的拉丁文缩写请看参考文献2.


  • a.e.,表示几乎处处,是英文almost everywhere的缩写,多见于实变函数(几乎处处收敛);
  • a.s.,表示几乎必然,是英文almost surely的缩写,多见于概率论,指事件发生的概率为 1 1 1
  • s.t.,表示使得……满足……受制于……),是英文subject to(或such that)的缩写。

集合关系

元素与集合之间的关系

  • x ∈ S x\in S xSx belongs to S或者x is an element of S;

集合与集合之间的关系

  • A ⊆ B A\subseteq B ABA is contained in B或者B contains A;
  • A ⊂ B A\subset B ABA is a proper subset of B;

函数常用符号(表达)

  • 定义域:domain,简记为D
  • 值域:range,简记为R
  • 陪域:codomain

其他常用的中英文对照

  • { 素 数 : p r i m e 合 数 : c o m p o s i t e \begin{cases}{素数:prime}\\{合数:composite}\end{cases} {primecomposite

  • { 奇 数 : o d d   n u m b e r 偶 数 : e v e n   n u m b e r \begin{cases}{奇数:odd\ number}\\{偶数:even\ number}\end{cases} {odd numbereven number

  • { 和 : s u m 差 : d i f f e r e n c e 积 : p r o d u c t 商 : q u o t i e n t \begin{cases}{和:sum}\\{差:difference}\\{积:product}\\{商:quotient}\end{cases} sumdifferenceproductquotient

  • { 定 义 : d e f i n i t i o n 定 理 : t h e o r e m 引 理 : l e m m a 性 质 : p r o p e r t y 命 题 : p r o p o s i t i o n 推 论 : c o r o l l a r y 公 理 : a x i o m 公 设 : p o s t u l a t e 猜 想 : h y p o t h e s i s \begin{cases}{定义:definition}\\{定理:theorem}\\{引理:lemma}\\{性质:property}\\{命题:proposition}\\{推论:corollary}\\{公理:axiom}\\{公设:postulate}\\{猜想:hypothesis}\end{cases} definitiontheoremlemmapropertypropositioncorollaryaxiompostulatehypothesis

  • { 平 行 : h o r i z o n t a l 竖 直 : v e r t i c a l 互 相 垂 直 : p e r p e n d i c u l a r \begin{cases}{平行:horizontal}\\{竖直:vertical}\\{互相垂直:perpendicular}\\\end{cases} horizontalverticalperpendicular

  • 六个三角函数:

    { 正 弦 : s i n e 余 弦 : c o s i n e 正 切 : t a n g e n t 余 切 : c o t a n g e n t 正 割 : s e c a n t 余 割 : c o s e c a n t \begin{cases}{正弦:sine}\\{余弦:cosine}\\{正切:tangent}\\{余切:cotangent}\\{正割:secant}\\{余割:cosecant}\end{cases} sinecosinetangentcotangentsecantcosecant

  • ⋯ ⋯ \cdots\cdots

主要参考


  1. 《数学专业英语(第二版)》吴炯圻; ↩︎

  2. What’s the Difference Between i.e. & e.g.?↩︎

©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页