Java 动态规划实现最长上升子序列计算

6 篇文章 0 订阅
题:最长上升子序列
给定一个无序的整数数组,找到其中最长上升子序列的长度。

输入: [10,9,2,5,3,7,101,18]
输出: 4 
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。


// 动态规划实现
public static void maxSize(int[] arr){
        int[] dp = new int[arr.length]; // 存放数组中对应下标元素的最长上升子序
        // arr = [10,9, 2, 5, 3, 7, 101, 18]
        // dp = [1, 1, 1, 2, 2, 3, 4, 4]
        int max = 0; // 存放最长上升子序
        for (int i = 0; i < arr.length; i++){ // 遍历数组
            dp[i] = 1; // dp[i] 最小值为1  前面没有其他小于其所以子序为其本身既 1
            for (int j = 0; j < i; j++){ // 遍历数组 到i的位置 
                /** 和前面的数比较,当大于前面的元素(既j下标的元素arr[j]),获取元素对应的最长上升子序(dp[j])
                 *  然后将arr[j] 最长上升子序 + 1 (dp[j] + 1) 当该值大于 arr[i] 当前的最长上升子序(dp[i])
                 *  把 dp[j] + 1 赋值给 dp[i]
                **/ 
                if (arr[j] < arr[i]){  
                    if (dp[i] < dp[j] + 1){
                        dp[i] = dp[j] + 1;
                    }
                }
            }
            // dp[i] 是否大于 max
            if (max < dp[i]){
                max = dp[i]; // max 更新为 dp[i] 既截止至i下标的最长上升子序长度
            }
        }
        System.out.println(Arrays.toString(dp));
        System.out.println(max);
    }

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值