题:最长上升子序列
给定一个无序的整数数组,找到其中最长上升子序列的长度。
输入: [10,9,2,5,3,7,101,18]
输出: 4
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。
// 动态规划实现
public static void maxSize(int[] arr){
int[] dp = new int[arr.length]; // 存放数组中对应下标元素的最长上升子序
// arr = [10,9, 2, 5, 3, 7, 101, 18]
// dp = [1, 1, 1, 2, 2, 3, 4, 4]
int max = 0; // 存放最长上升子序
for (int i = 0; i < arr.length; i++){ // 遍历数组
dp[i] = 1; // dp[i] 最小值为1 前面没有其他小于其所以子序为其本身既 1
for (int j = 0; j < i; j++){ // 遍历数组 到i的位置
/** 和前面的数比较,当大于前面的元素(既j下标的元素arr[j]),获取元素对应的最长上升子序(dp[j])
* 然后将arr[j] 最长上升子序 + 1 (dp[j] + 1) 当该值大于 arr[i] 当前的最长上升子序(dp[i])
* 把 dp[j] + 1 赋值给 dp[i]
**/
if (arr[j] < arr[i]){
if (dp[i] < dp[j] + 1){
dp[i] = dp[j] + 1;
}
}
}
// dp[i] 是否大于 max
if (max < dp[i]){
max = dp[i]; // max 更新为 dp[i] 既截止至i下标的最长上升子序长度
}
}
System.out.println(Arrays.toString(dp));
System.out.println(max);
}