DP之背包问题(01背包+完全背包+分组背包+多重背包+二维费用背包)

首先是01背包,所有背包问题的基础,看这个博客很棒: 01背包,里面讲的很详细

常规二维写法
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<set>
#include<map>
#include<queue>
#include<cmath>
using namespace std;
int dp[1005][1005];
int main()
{
    int v[1005];
    int w[1005];

    int t;
    scanf("%d",&t);
    while(t --)
    {
        int n, m;
        scanf("%d%d",&n,&m);
        memset(dp, 0, sizeof(dp));
        for(int i = 1; i <= n; i ++)
            scanf("%d",&v[i]);
        for(int j = 1; j <= n; j ++)
            scanf("%d",&w[j]);
        for(int i = 1; i <= n; i ++)
            for(int j = 0; j <= m; j ++)
        {
            if(j < w[i])
                dp[i][j] = dp[i-1][j];
            else
                dp[i][j] = max(dp[i-1][j],dp[i-1][j-w[i]] + v[i]);

        }
        printf("%d\n",dp[n][m]);
    }
    return 0;
}
dp[i][v]是由dp[i-1][v]和dp[i-1][v-c[i]]两个子问题递推而来,能否保证在推dp[i][v]时(也即在第i次主循环中推dp[v]时)能够得到dp[i-1][v]和dp[i-1][v-c[i]]的值呢?事实上,这要求在每次主循环中我们以v=V..0的顺序推dp[v],这样才能保证推dp[v]时dp[v-c[i]]保存的是状态dp[i-1][v-c[i]]的值
优化空间后
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<set>
#include<map>
#include<queue>
#include<cmath>
using namespace std;
int main()
{
    int v[1005];
    int w[1005];
    int dp[1005];
    int t;
    scanf("%d",&t);
    while(t --)
    {
        memset(dp, 0, sizeof(dp));
        int n, V;
        scanf("%d%d",&n,&V);
        for(int i = 1; i <= n; i ++)
            scanf("%d",&w[i]);
        for(int i = 1; i <= n; i ++)
            scanf("%d",&v[i]);
        for(int i = 1; i <= n; i ++)
            for(int j = V; j >= v[i]; j --)
            {
                dp[j] = max(dp[j], dp[j - v[i]] + w[i]);
            }
            printf("%d\n",dp[V]);
    }
    return 0;
}

然后是完全背包,之前01背包要求逆序,是为了防止物品重复放入,并且可以继承之前的状态,所以完全背包正序即可重复放入

和01背包相似,同一种物品有无数个

完全背包提升题HDU - 3092
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<set>
#include<map>
#include<queue>
#include<cmath>
using namespace std;
int main()
{
    int w[3] = {150, 200, 350};
    int v[3] = {150, 200, 350};
    int n, t;
    int f[10005];
    scanf("%d",&t);
    while(t --)
    {
        memset(f, 0, sizeof(f));
        scanf("%d",&n);
        for(int i = 0; i < 3; i ++)
            for(int j = 150; j <= n; j ++)
            if(w[i] <= j)
            f[j] = max(f[j], f[j - w[i]] + v[i]);
        printf("%d\n",n - f[n]);
    }
    return 0;
}
这道题自作聪明把for循环第二层写成了
for(int j = 150; j <= n; j += 50)

其实n不一定是一个可以被50整除的数,联系完全背包建表过程就可以知道是错误的了,然而这样也不是不可以,只要保证n是可以整除50的数就ok,所以有了下面这个优化,应该又快了不少才对

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<set>
#include<map>
#include<queue>
#include<cmath>
using namespace std;
int main()
{
    int w[3] = {150, 200, 350};
    int v[3] = {150, 200, 350};
    int n, t;
    int f[10005];
    scanf("%d",&t);
    while(t --)
    {
        memset(f, 0, sizeof(f));
        scanf("%d",&n);
        for(int i = 0; i < 3; i ++)
            for(int j = 150; j <= n; j += 50)
            if(w[i] <= j)
            f[j] = max(f[j], f[j - w[i]] + v[i]);
        int m = n - (n % 50);
        printf("%d\n",n - f[m]);
    }
    return 0;
}

然后是分组背包,分组背包将物品分为了几组,有了新的限制

分组背包使用一维数组的伪代码如下:
for 所有的组k
    for v=V..0
        for 所有的i属于组k
            f[v]=max{f[v],f[v-c[i]]+w[i]}

分组背包裸题HDU - 1712

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<set>
#include<map>
#include<queue>
#include<cmath>
using namespace std;
int main()
{
    int n, m;
    int a[105][105];
    int dp[105];
    while(scanf("%d%d",&n,&m) != EOF&&n&&m)
    {
        memset(dp, 0, sizeof(dp));
        for(int i = 1; i <= n; i ++)
            for(int j = 1; j <= m; j ++)
            scanf("%d",&a[i][j]);
        for(int i = 1; i <= n; i ++)
            for(int j = m; j > 0; j --)//倒叙保证每天只能选一种,形似01背包
                for(int k = 1; k <= j; k ++)
                dp[j] = max(dp[j], dp[j - k] + a[i][k]);
        printf("%d\n",dp[m]);
    }
    return 0;
}

为什么倒叙就是01背包而正序就是完全背包呢,因为倒叙无法继承之前的状态,只能选择一个物品,而正序可以在背包容量之内无限添加该物品,关于这点画个图模拟一下就明白了,对于多重背包,就是之前01背包的扩展版本,每个物品的数量都是有限个,要不然不选择该物品,要不然就选择k个,这种问题显然不能用完全背包的思想做,因为完全背包问题中,每一个物品有无限个,而多重背包是有限个,此时我们应该向01背包问题靠拢

for(int i = 1; i <= n; i ++)
            for(int j = V; j >= v[i]; j --)

这是01背包核心代码,此时倒叙保证每次只能选择一个物品,如果想要选择多个呢,此时需要在两个for之间加上一个循环,该循环的目的是保证选择该物品的同时,可以延续之前的状态,以达到选择多个物品的目的,必须我要选择两个a物品,用01背包的代码只能完成选择一个,如果再跑一边第二层循环,就能延续之前选择一个a物品的状态,从而实现a物品的第二次添加,所以再跑一边第二层循环,又可以添加一次,即有几个a物品,就跑几次第二层循环,以达到同种物品的多次添加,这样就和01背包很相似了,个人理解描述有限。。

for(int i = 1; i <= m; i ++)
            for(int j = 1; j <= num[i]; j ++)
                for(int k = n; k >= v[i]; k --)

01背包两层循环之间添加了一个for循环,这就是上面所说的01背包状态延续版本--多重背包

多重背包裸题 HDU - 2191
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<set>
#include<map>
#include<queue>
#include<cmath>
using namespace std;
int w[105], v[105], num[105], dp[105];
int main()
{
    int m, n;
    int t;
    scanf("%d",&t);
    while(t --)
    {
        memset(dp, 0, sizeof(dp));
        scanf("%d%d",&n,&m);
        for(int i = 1; i <= m; i ++)
            scanf("%d%d%d",&v[i],&w[i],&num[i]);
        for(int i = 1; i <= m; i ++)
            for(int j = 1; j <= num[i]; j ++)
                for(int k = n; k >= v[i]; k --)
                dp[k] = max(dp[k], dp[k - v[i]] + w[i]);
            printf("%d\n",dp[n]);
    }
    return 0;
}

还是这道题,看到大佬写的方法,发现还挺好理解,就是二进制解决问题方面不会证明。。。但确实是快了不少

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<set>
#include<map>
#include<queue>
#include<cmath>
using namespace std;
int dp[1005];
int c[1005], w[1005], num[1005];
int m, n;
void zero_pack(int cost, int weigh, int n)//01背包
{
    for(int i = n; i >= cost; i --)
        dp[i] = max(dp[i], dp[i - cost] + weigh);
}
void complete_pack(int cost, int weigh, int n)//完全背包
{
    for(int i = cost; i <= n; i ++)
        dp[i] = max(dp[i], dp[i - cost] + weigh);
}
int multi_pack(int c[], int w[], int num[], int n, int m)//多重背包
{
    memset(dp, 0, sizeof(dp));
    for(int i = 1; i <= n; i ++)
    {
        if(num[i] * c[i] > m)//此种情况视为该物品无限个,用完全背包解决
            complete_pack(c[i], w[i], m);
        else//否则用01背包解决,用二进制解决问题降低时间复杂度,必定可以凑出结果
        {
            int k = 1;
            while(k < num[i])
            {
                zero_pack(k*c[i], k*w[i], m);
                num[i] -= k;
                k <<= 1;
            }
            zero_pack(num[i]*c[i], num[i]*w[i], m);
        }
    }
    return dp[m];
}
int main()
{
    int t;
    scanf("%d",&t);
    while(t --)
    {
        scanf("%d%d",&m,&n);
        for(int i = 1; i <= n; i ++)
            scanf("%d%d%d",&c[i],&w[i],&num[i]);
        printf("%d\n",multi_pack(c, w, num, n, m));
    }
    return 0;
}

关于二进制的问题,在网上找了个证明

定理:一个正整数n可以被分解成1,2,4,…,2^(k-1),n-2^k+1(k是满足n-2^k+1>0的最大整数)的形式,且1~n之内的所有整数均可以唯一表示成1,2,4,…,2^(k-1),n-2^k+1中某几个数的和的形式。

证明如下:

(1) 数列1,2,4,…,2^(k-1),n-2^k+1中所有元素的和为n,所以若干元素的和的范围为:[1, n];

(2)如果正整数t<= 2^k – 1,则t一定能用1,2,4,…,2^(k-1)中某几个数的和表示,这个很容易证明:我们把t的二进制表示写出来,很明显,t可以表示成n=a0*2^0+a1*2^1+…+ak*2^(k-1),其中ak=0或者1,表示t的第ak位二进制数为0或者1.

(3)如果t>=2^k,设s=n-2^k+1,则t-s<=2^k-1,因而t-s可以表示成1,2,4,…,2^(k-1)中某几个数的和的形式,进而t可以表示成1,2,4,…,2^(k-1),s中某几个数的和(加数中一定含有s)的形式

然后就是二维费用背包,即选择一种物品,需要付出两种费用,在之前的维度上再加一维就行,和之前一样的,倘若是01背包,就倒叙,完全背包就正序,第一层循环不变,仍旧遍历物品种类,第二三层循环可以彼此替换,第二三层决定是01还是完全背包
二维背包 看这个博客很棒

二维背包裸题HDU - 2159 

直接挂代码
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<set>
#include<map>
#include<queue>
#include<cmath>
using namespace std;
#define inf 0x3f3f3f3f
int main()
{
    int v[105], w[105];
    int dp[105][105];
    int m, n, k, s;
    while(scanf("%d%d%d%d",&n,&m,&k,&s) != EOF)
    {
        memset(dp, 0, sizeof(dp));
        int ans = inf;
        int flag = 0;
        for(int i = 1; i <= k; i ++)
            scanf("%d%d",&v[i],&w[i]);
        for(int i = 1; i <= k; i ++)
            for(int j = w[i]; j <= m; j ++)
                for(int k = 1; k <= s; k ++)
                {
                    dp[j][k] = max(dp[j][k], dp[j - w[i]][k - 1] + v[i]);
                    if(dp[j][k] >= n && j < ans)
                    {
                        flag = 1;
                        ans = j;
                    }
                }
            if(flag) printf("%d\n",m - ans);
            else printf("-1\n");
    }
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值