这是一道收获颇深的线段树,打破了我对线段树死板模板的印象,这个数据结构灵活程度还是挺高的,尤其是同一个地方出现的同一个函数,甚至因为题意不一样而导致作用完全不一样,做线段树的题要有一个提前的设计才行啊
https://cn.vjudge.net/contest/66989#problem/F
这道题不会做,大家都是先把区间缩成点,便于计算和计数
之后用单纯的一个laz数组来标记每个叶子节点的颜色,这个laz也是由根节点往下更新的,同样的是在update里面标记,然后在query里面一次更新完,不过在update里面仍然需要pushdown操作,因为这样可以避免同层染色的时候出现矛盾,关键点在于query里面的计数操作,挺精髓的,利用dfs的特性,当l == r时,节点恰好是由左到右依次遍历的,利用这个特性进行计数,省去了不少时间,感觉自己理解的太浅了(菜),导致不太会用,仍需加油
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<vector>
#include<set>
#include<map>
#include<queue>
#include<cmath>
#define ll long long
#define mod 1000000007
#define inf 0x3f3f3f3f
using namespace std;
const int maxn = 8005;
int n;
int last;
int laz[maxn << 2];
int num[8005];
void pushdown(int rt)
{
if(laz[rt] == -1) return ;
laz[rt << 1] = laz[rt << 1 | 1] = laz[rt];
laz[rt] = -1;
}
void update(int left, int right, int c, int l, int r, int rt)
{
if(left <= l && right >= r)
{
laz[rt] = c;
return ;
}
pushdown(rt);
int m = (l + r) >> 1;
if(left <= m) update(left, right, c, l, m, rt << 1);
if(right > m) update(left, right, c, m + 1, r, rt << 1 | 1);
}
void query(int l, int r, int rt)
{
if(l == r)
{
if(laz[rt] != -1 && laz[rt] != last)
num[laz[rt]] ++;
last = laz[rt];
return ;
}
pushdown(rt);
int m = (l + r) >> 1;
query(l, m, rt << 1);
query(m + 1, r, rt << 1 | 1);
}
int main()
{
while(scanf("%d", &n) != EOF)
{
int u, v, w;
//int cnt = 0;
memset(laz, -1, sizeof(laz));
memset(num, 0, sizeof(num));
for(int i = 1; i <= n; i ++)
{
scanf("%d%d%d", &u, &v, &w);
if(u >= v) continue;
update(u + 1, v, w, 1, 8000, 1);
}
last = -1;
query(1, 8000, 1);
for(int i = 0; i <= 8000; i ++)
{
if(num[i])
{
printf("%d %d\n", i, num[i]);
}
}
printf("\n");
}
return 0;
}