学弟讲算法-数论-欧拉函数

本文介绍了欧拉函数的定义,即对于正整数n,φ(n)表示小于n并与n互质的正整数数量。通过公式n∏(1−pi1)计算φ(n),并举例说明。同时,文章探讨了欧拉函数的性质,包括欧拉定理和费马小定理,并提供了计算φ(n)的方法。此外,还讨论了小于n且与n互质的数的和S=n×2φ(n)。
摘要由CSDN通过智能技术生成

欧拉函数

定义

φ ( n ) \varphi(n) φ(n),对于一个正整数 n,小于 n 且和 n 互质的正整数(包括 1)的个数

φ ( n ) = n ∏ ( 1 − 1 p i ) \varphi(n) = n\prod (1-\frac{1}{p_i}) φ(n)=n(1pi1) 其中 p i p_i pi为 n 的所有质因数,n 是不为 0 的整数; φ ( 1 ) \varphi(1) φ(1)=1,唯一和 1 互质的数就是 1 本身.

  • 解释:
  • 对于 n 的一个质因数 p i p_i pi,在 n 以内 p i p_i pi的倍数均匀分布
  • n 以内有 1 p i \frac{1}{p_i} pi1个数是 p i p_i pi的倍数,则有 1 − 1 p i 1 - \frac{1}{p_i} 1pi1个数不是 p i p_i pi的倍数;
  • 同理,对于质因数 p j p_j pj,则有
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值