欧拉函数
定义
φ ( n ) \varphi(n) φ(n),对于一个正整数 n,小于 n 且和 n 互质的正整数(包括 1)的个数
φ ( n ) = n ∏ ( 1 − 1 p i ) \varphi(n) = n\prod (1-\frac{1}{p_i}) φ(n)=n∏(1−pi1) 其中 p i p_i pi为 n 的所有质因数,n 是不为 0 的整数; φ ( 1 ) \varphi(1) φ(1)=1,唯一和 1 互质的数就是 1 本身.
- 解释:
- 对于 n 的一个质因数 p i p_i pi,在 n 以内 p i p_i pi的倍数均匀分布
- n 以内有 1 p i \frac{1}{p_i} pi1个数是 p i p_i pi的倍数,则有 1 − 1 p i 1 - \frac{1}{p_i} 1−pi1个数不是 p i p_i pi的倍数;
- 同理,对于质因数 p j p_j pj,则有