51nod 幸运号码

1043 幸运号码 

基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题

 收藏

 关注

1个长度为2N的数,如果左边N个数的和 = 右边N个数的和,那么就是一个幸运号码。

例如:99、1230、123312是幸运号码。

给出一个N,求长度为2N的幸运号码的数量。由于数量很大,输出数量 Mod 10^9 + 7的结果即可。

Input

输入N(1<= N <= 1000)

Output

输出幸运号码的数量 Mod 10^9 + 7

Input示例

1

Output示例

9

这道题就是dp[i][j]表示的是i位数的和为j的个数,dp[i][j]=dp[i][j]+dp[i-1][j-k] 

#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
#include<vector>
#define maxn  1005
#define inf 0x3f3f3f
const int mod=1e9+7;
#define ll long long
#define clear(a,b) memeset(a,b,sizeof(a))
ll dp[maxn][maxn*9];
using namespace std;
int main()
{
    int n;
    cin>>n;
    dp[0][0]=1;//前置为0的
    for(int i=1;i<=n;i++)
    {
       for(int j=0;j<=i*9;j++)//j一次增加9
       {
           for(int k=0;k<=9;k++)//dp【i-1】【j-k】就会从新增加的数开始加和,但会有前置为0的情况
           {
               if(j>=k)
               {
                   dp[i][j]=(dp[i-1][j-k]+dp[i][j])%mod;
               }
               else 
               break;
           }
       }
    }
    ll sum=0;
    for(int i=0;i<=9*n;i++)
    	sum=(sum+(dp[n][i]-dp[n-1][i])*dp[n][i])%mod;//dp[n][i]-dp[n-1][i] 就是前置为0的情况,因为为0的时候都多加了一次
    	cout<<sum<<endl;
    
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值