基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题
收藏
关注
1个长度为2N的数,如果左边N个数的和 = 右边N个数的和,那么就是一个幸运号码。
例如:99、1230、123312是幸运号码。
给出一个N,求长度为2N的幸运号码的数量。由于数量很大,输出数量 Mod 10^9 + 7的结果即可。
Input
输入N(1<= N <= 1000)
Output
输出幸运号码的数量 Mod 10^9 + 7
Input示例
1
Output示例
9
这道题就是dp[i][j]表示的是i位数的和为j的个数,dp[i][j]=dp[i][j]+dp[i-1][j-k]
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
#include<vector>
#define maxn 1005
#define inf 0x3f3f3f
const int mod=1e9+7;
#define ll long long
#define clear(a,b) memeset(a,b,sizeof(a))
ll dp[maxn][maxn*9];
using namespace std;
int main()
{
int n;
cin>>n;
dp[0][0]=1;//前置为0的
for(int i=1;i<=n;i++)
{
for(int j=0;j<=i*9;j++)//j一次增加9
{
for(int k=0;k<=9;k++)//dp【i-1】【j-k】就会从新增加的数开始加和,但会有前置为0的情况
{
if(j>=k)
{
dp[i][j]=(dp[i-1][j-k]+dp[i][j])%mod;
}
else
break;
}
}
}
ll sum=0;
for(int i=0;i<=9*n;i++)
sum=(sum+(dp[n][i]-dp[n-1][i])*dp[n][i])%mod;//dp[n][i]-dp[n-1][i] 就是前置为0的情况,因为为0的时候都多加了一次
cout<<sum<<endl;
return 0;
}