【大模型微调】Qwen2.5-7B 微调行业模型

一、基本概念

1.什么是大模型微调

在这里插入图片描述

2.微调的流程

在这里插入图片描述

二、搭建环境

1.准备GPU环境

2.下载预训练模型

Qwen2.5-7B-Instruct 可以通过HuggingFace 下载,也可使用hf-mirror ,官网链接:https://hf-mirror.com/Qwen/Qwen2.5-7B-Instruct

在这里插入图片描述
执行如下指令进行模型下载:
cd /root/
git lfs install
git clone https://hf-mirror.com/Qwen/Qwen2.5-7B-Instruct
下载完成后查看文件
cd Qwen2.5-7B-Instruct
rm -rf .git 清除掉.git目录,避免数据盘空间不足

3.上传代码

将微调代码先进行压缩为zip包,通过SFTP进行上传至与Qwen2.5-7B-Instruct同目录下

三、模型微调

1.训练

这里使用lora进行微调训练,命令行终端执行下面的命令,开始训练
cd 微调代码/qwen2/
bash train.sh
训练过程中要保持网络链接,否则会导致前台训练任务被kill 掉而使训练失败
训练过程中会有运行的进度条,整个训练耗时需要45分钟左右

2.训练过程可视化

新建一个终端,使用tensorboard 工具将记录的loss 可视化展示,中断命令行运行如下命令
tensorboard --logdir=output/hotel-qwen2-20240720-16221221 --bind_all
其中,–logdir的内容为训练过程中生成内容,如output/hotel-qwen2-20240720-16221221
在这里插入图片描述
tensorboard 有一个服务端可以在网页中进行访问

3.微调后测试

训练完成后,在测试集上进行推理测试,并计算出SLOT和BLEU的指标
在运行测试指令前,需要修改对应的checkpoint 文件所在路径
cd 微调代码/qwen2/
vim eval.sh
在打开的文件中,将对应的文件夹路径调整为自己的checkpoint 文件所在路径
在这里插入图片描述
调整完成后,保存退出,然后执行如下指令
bash eval.sh
运行结束后,整个测试耗时需要13分钟左右

4.模型使用

使用提供的web_demo 代码进行模型使用测试,测试前需要修改使用训练后的模型,然后执行如下指令
cd 微调代码/web_demo
vim qwen2_lora.sh
修改如下两处参数
在这里插入图片描述
保存退出后执行qwen2_lora.sh

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值