暑假牛客多校第五场g题 (还是练习的少 这样的dp都不会写)

链接:https://ac.nowcoder.com/acm/contest/885/G
来源:牛客网

You are given two strings s and t composed by digits (characters ‘0’ \sim∼ ‘9’). The length of s is n and the length of t is m. The first character of both s and t aren’t ‘0’.

Please calculate the number of valid subsequences of s that are larger than t if viewed as positive integers. A subsequence is valid if and only if its first character is not ‘0’.
Two subsequences are different if they are composed of different locations in the original string. For example, string “1223” has 2 different subsequences “23”.

Because the answer may be huge, please output the answer modulo 998244353.
就是给你一个串s 和一个串 t 问你s中有多少个字串的字典序大于t
这道dp一开始就没有往dp方向去想 而且这个枚举的竟然是后缀 (其实也是对的,就是枚举后缀 ,这样不会算重 )
对于s串中长度大于t串的 并且不包含前导0的 直接用组合数计算就好了
那么现在考虑长度为m的子串怎么计算
设dp[i] [j] 表示s串中长度为i的后缀中有多少长度为j的字串并且字典序大于t长度为j的后缀串 !! 从后缀出发的话 只要我当前的串的值大于t串 那么后面的我就可以随机选了 因为两个串比较的话本来就是从第一个字母开始比较的 这个题目为啥不考虑前缀呢 因为如果你考虑前缀的话 如果字典序大于的话 后面是不是可以随便选择了 这样选的话肯定会有重复的方案 如果考虑后缀 对于s串, 从后面往前面扫 对于任意的一个s[i] 我只需要考虑这个s[i] 要不要加入这个我当前长度为j的后缀子串中 而且对于每个不同长度的j串 我都不会计算重叠的
对于任意扩展的一个新的字符

有dp[i][j] += dp[i - 1][j] 接下来考虑s[i] 和 t[j] 如果两者相等我话
dp[i][j] += dp[i - 1][ j - 1] 也就是把我这个s[i] 给纳入 前面的 j - 1个中 (前面的j-1的后缀肯定是大于t串的 j - 1)这样的一个串也是大于的
如果 s[i] >t[j] 的话 我将这个字符作为我的第一位 那么后面随便选 j - 1个 我的字典序都是比t串中长度为j的后缀串要大
对于长度大于t的直接组合数计数就好了

#include <bits/stdc++.h>

using namespace std;

const int maxn = 3e3 + 100;
const int mod = 998244353;
typedef long long ll;

char s[maxn],t[maxn];

ll dp[maxn][maxn],c[maxn][maxn]; // 表示s串长度为j后缀的字串 串有多少长度为i的字串并且大于t的长度为i的字串

void init() {
    c[0][0] = 1;
    for(int i = 1; i < maxn; i++) {
        c[i][0] = c[i][i] = 1;
        for(int j = 1; j < i; j++) {
            c[i][j] = c[i-1][j-1] % mod + c[i-1][j] % mod;
            c[i][j] %= mod;
        }
    }
}

// s[i]  > t[i]

int main()
{
    int T;
    scanf("%d",&T);
    init();
    while(T --)
    {
        int n,m;
        scanf("%d%d",&n,&m);
        scanf("%s%s",s + 1,t + 1);
        ll ans = 0;
        for(int i = 0; i <= n; i++)
        {
            for(int j = 0; j <= m; j++) dp[i][j] = 0;
        }
        for(int i = 1; i <= n - m; i++)
        {
            if(s[i] == '0') continue;
            else
            {
                for(int j = m; j <= n; j++)
                {
                    if(n - i >= j)
                    {
                        ans += c[n - i][j] % mod;
                        ans %= mod;
                    }
                    else break;
                }
            }
        }
        //printf("ans = %lld\n",ans);
        for(int i = 1; i <= n; i++) // dp[i][j] 表示 s串中长度为i的后缀串中有多少长度为j的后缀串并且 字典序大于t[j]
        {
            for(int j = 1; j <= m; j++) //
            {
                int s_i = n - i + 1;
                int t_j = m - j + 1;
                if(j > i) continue;
                dp[i][j] = (dp[i][j] + dp[i - 1][j]) % mod;
                if(s[s_i] > t[t_j]) // 从后面的随便选 最后再加上我自己这个就好了 去构成
                {
                    dp[i][j] = (c[i - 1][j - 1] + dp[i][j]) % mod;
                }
                else if(s[s_i] == t[t_j])
                {
                    dp[i][j] = (dp[i][j] + dp[i - 1][j - 1]) % mod; // 相等的话就直接从前面继承过来
                }
            }
        }
        ans = (ans + dp[n][m])%mod;
        printf("%lld\n",ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值