根据一棵树的中序遍历与后序遍历构造二叉树。
注意:
你可以假设树中没有重复的元素。例如,给出
中序遍历 inorder = [9,3,15,20,7]
后序遍历 postorder = [9,15,7,20,3]
返回如下的二叉树:3
/ \
9 20
/ \
15 7
注意:
你可以假设树中没有重复的元素。例如,给出
前序遍历 preorder = [3,9,20,15,7]
中序遍历 inorder = [9,3,15,20,7]
返回如下的二叉树:3
/ \
9 20
/ \
15 7
参考资料:代码随想录
解题思路
后序: 左 右 中
中序: 左 中 右
分为以下几步:
1. 后序、中序是否为空,为空直接返回空树,否则进入后续步骤
2. 获取后序最后一个元素,作为根节点
3. 由后序最后一个元素在中序里找到分割点delimiter
4. 由分割点对中序进行分割成子序列:左中序,右中序
5. 然后对后序进行分割成子序列:左后序, 右后序 (需要借助左中序来判断分割点位置,详情看代码注释)
6. 递归构造左子树,右子树
注意区间:使用左闭右开的话,整个代码要保持这个规则 ,如果使用左开右闭,那么就保持左开右闭!不然数组很容易就越界了。
```cpp []
/**容易理解,但是耗费时空
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* traverse(vector<int> & inorder, vector<int> &postorder){
if(postorder.size() == 0) return nullptr;
int rootValue = postorder[postorder.size()-1];
TreeNode *root = new TreeNode(rootValue);
if(postorder.size() == 1) return root;
//从中序中找到切割下标
int delimiterIdex;
for(delimiterIdex=0; delimiterIdex < inorder.size(); delimiterIdex++){
if(inorder[delimiterIdex] == rootValue) break;
}
//找到切割点,对中序进行切割,左闭右开
vector<int> leftInorder(inorder.begin(), inorder.begin()+delimiterIdex);
vector<int> rightInorder(inorder.begin()+delimiterIdex+1, inorder.end());
//舍弃后序最后一个元素
postorder.resize(postorder.size()-1);
//对后序进行切割,需要借助一下左中序。这里是因为中序后序切割的两个子数组长度是一致这个原理来
vector<int> leftPostorder(postorder.begin(), postorder.begin()+leftInorder.size());
vector<int> rightPostorder(postorder.begin()+leftInorder.size(), postorder.end());
//对分割后的中序、后序进行递归
root->left = traverse(leftInorder, leftPostorder);
root->right = traverse(rightInorder, rightPostorder);
return root;
}
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
if(inorder.size()==0 || postorder.size()==0) return nullptr;
return traverse(inorder, postorder);
}
};
```
```cpp []
/**不容易理解,但是节省时空,使用下标索引
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* traverse(vector<int> & inorder, int inorderBegin, int inorderEnd, vector<int> &postorder, int postorderBegin, int postorderEnd){
if(postorderBegin == postorderEnd) return nullptr;
int rootValue = postorder[postorderEnd-1];
TreeNode *root = new TreeNode(rootValue);
if((postorderEnd - postorderBegin) == 1) return root;
//从中序中找到切割下标
int delimiterIdex;
for(delimiterIdex=0; delimiterIdex < inorderEnd; delimiterIdex++){
if(inorder[delimiterIdex] == rootValue) break;
}
//找到切割点,对中序进行切割
int leftInorderBegin = inorderBegin;//左中序
int leftInorderEnd = delimiterIdex;
int rightInorderBegin = delimiterIdex+1;//右中序
int rightInorderEnd = inorderEnd;
//对后序进行切割,需要借助一下左中序。这里是因为中序后序切割的两个子数组长度是一致这个原理来
int leftPostorderBegin = postorderBegin;//注意左闭右开原则
int leftPostorderEnd = postorderBegin + (delimiterIdex - inorderBegin);
int rightPostorderBegin = postorderBegin + (delimiterIdex - inorderBegin);
int rightPostorderEnd = postorderEnd-1;
//对分割后的中序、后序进行递归
root->left = traverse(inorder, leftInorderBegin, leftInorderEnd, postorder, leftPostorderBegin, leftPostorderEnd);
root->right = traverse(inorder, rightInorderBegin, rightInorderEnd, postorder, rightPostorderBegin, rightPostorderEnd);
return root;
}
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
if(inorder.size()==0 || postorder.size()==0) return nullptr;
return traverse(inorder, 0, inorder.size(), postorder, 0, postorder.size());
}
};
```
由前序、中序构造二叉树代码如下:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
// 前序:中 左 右
// 中序:左 中 右
class Solution {
public:
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
if(preorder.size() == 0 || inorder.size() == 0) return nullptr;
int rootValue = preorder[0];
TreeNode *node = new TreeNode(rootValue);
if(preorder.size() == 1){
return node;
}
//在中序中找到切割点
int delimiterIndex;
for(delimiterIndex=0; delimiterIndex < inorder.size(); delimiterIndex++){
if(inorder[delimiterIndex] == rootValue) break;
}
//找到切割点后,切割中序成左中序、右中序
vector<int> leftInorder(inorder.begin(), inorder.begin()+delimiterIndex);
vector<int> rightInorder(inorder.begin()+delimiterIndex+1, inorder.end());
//切割前序,结合左中序数组大小
//前序第一个元素要舍弃
vector<int> leftPreorder(preorder.begin()+1, preorder.begin()+1+leftInorder.size());
vector<int> rightPreorder(preorder.begin()+1+leftInorder.size(), preorder.end());
//递归构造左、右子树
node->left = buildTree(leftPreorder, leftInorder);
node->right = buildTree(rightPreorder, rightInorder);
return node;
}
};
作者:jasscical
链接:https://leetcode-cn.com/problems/construct-binary-tree-from-inorder-and-postorder-traversal/solution/106you-zhong-xu-hou-xu-lai-gou-zao-er-cha-shu-by-j/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
/**下标索引法
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
// 前序:中 左 右
// 中序:左 中 右
class Solution {
public:
TreeNode* traverse(vector<int> &preorder, int preorderBegin, int preorderEnd, vector<int> &inorder, int inorderBegin, int inorderEnd){
if(preorderBegin == preorderEnd) return nullptr;
int rootValue = preorder[preorderBegin];
TreeNode *node = new TreeNode(rootValue);
if(preorderEnd-preorderBegin == 1) return node;
//在 中序(左 中 右) 找切割点
int delimiterIndex;
for(delimiterIndex=inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++){
if(inorder[delimiterIndex] == rootValue) break;
}
//根据切割点delimiterIndex,切割中序
//左中序:[左边界,delimiterIndex), 右中序:[delimiterIndex+1,右边界)
int leftInorder_l = inorderBegin;
int leftInorder_r = delimiterIndex;
int rightInorder_l = delimiterIndex+1;
int rightInorder_r = inorderEnd;
//根据切割点delimiterIndex,切割前序
//左前序:[左边界,左中序size+delimiterIndex), 右前序:[delimiterIndex,右边界)
int leftPreorder_l = preorderBegin+1;
int leftPreorder_r = preorderBegin+1+(leftInorder_r -leftInorder_l);
int rightPreorder_l = preorderBegin+1+(leftInorder_r -leftInorder_l);
int rightPreorder_r = preorderEnd;
//递归构造 左、右子树
node->left = traverse(preorder, leftPreorder_l, leftPreorder_r, inorder, leftInorder_l, leftInorder_r);
node->right = traverse(preorder, rightPreorder_l, rightPreorder_r, inorder, rightInorder_l, rightInorder_r);
return node;
}
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
if(preorder.size() == 0 || inorder.size() == 0) return nullptr;
return traverse(preorder, 0, preorder.size(), inorder, 0, inorder.size());
}
};
作者:jasscical
链接:https://leetcode-cn.com/problems/construct-binary-tree-from-inorder-and-postorder-traversal/solution/106you-zhong-xu-hou-xu-lai-gou-zao-er-cha-shu-by-j/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。