(树_13)构造二叉树

106. 从中序与后序遍历序列构造二叉树

根据一棵树的中序遍历与后序遍历构造二叉树。

注意:
你可以假设树中没有重复的元素。

例如,给出

中序遍历 inorder = [9,3,15,20,7]
后序遍历 postorder = [9,15,7,20,3]
返回如下的二叉树:

    3
   / \
  9  20
    /  \
   15   7

105. 从前序与中序遍历序列构造二叉树

注意:
你可以假设树中没有重复的元素。

例如,给出

前序遍历 preorder = [3,9,20,15,7]
中序遍历 inorder = [9,3,15,20,7]
返回如下的二叉树:

    3
   / \
  9  20
    /  \
   15   7

 

参考资料:代码随想录

 

解题思路

后序: 左 右 中

中序: 左  右

分为以下几步:

1. 后序、中序是否为空,为空直接返回空树,否则进入后续步骤

2. 获取后序最后一个元素,作为根节点

3. 由后序最后一个元素在中序里找到分割点delimiter

4. 由分割点对中序进行分割成子序列:左中序,右中序

5. 然后对后序进行分割成子序列:左后序, 右后序 (需要借助左中序来判断分割点位置,详情看代码注释)

6. 递归构造左子树,右子树

注意区间:使用左闭右开的话,整个代码要保持这个规则 ,如果使用左开右闭,那么就保持左开右闭!不然数组很容易就越界了。

```cpp []
/**容易理解,但是耗费时空
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* traverse(vector<int> & inorder, vector<int> &postorder){
        if(postorder.size() == 0) return nullptr;
        int rootValue = postorder[postorder.size()-1];
        TreeNode *root = new TreeNode(rootValue);
        
        if(postorder.size() == 1) return root;

        //从中序中找到切割下标
        int delimiterIdex;
        for(delimiterIdex=0; delimiterIdex < inorder.size(); delimiterIdex++){
            if(inorder[delimiterIdex] == rootValue) break;
        }
        //找到切割点,对中序进行切割,左闭右开
        vector<int> leftInorder(inorder.begin(), inorder.begin()+delimiterIdex);
        vector<int> rightInorder(inorder.begin()+delimiterIdex+1, inorder.end());

        //舍弃后序最后一个元素
        postorder.resize(postorder.size()-1);
        
        //对后序进行切割,需要借助一下左中序。这里是因为中序后序切割的两个子数组长度是一致这个原理来
        vector<int> leftPostorder(postorder.begin(), postorder.begin()+leftInorder.size());
        vector<int> rightPostorder(postorder.begin()+leftInorder.size(), postorder.end());

        //对分割后的中序、后序进行递归
        root->left = traverse(leftInorder, leftPostorder);
        root->right = traverse(rightInorder, rightPostorder);

        return root;
    }
    TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
        if(inorder.size()==0 || postorder.size()==0) return nullptr;
        return traverse(inorder, postorder);
    }
};
```
```cpp []
/**不容易理解,但是节省时空,使用下标索引
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
class Solution {
public:
    TreeNode* traverse(vector<int> & inorder, int inorderBegin, int inorderEnd, vector<int> &postorder, int postorderBegin, int postorderEnd){
        if(postorderBegin == postorderEnd) return nullptr;
        int rootValue = postorder[postorderEnd-1];
        TreeNode *root = new TreeNode(rootValue);
        
        if((postorderEnd - postorderBegin) == 1) return root;

        //从中序中找到切割下标
        int delimiterIdex;
        for(delimiterIdex=0; delimiterIdex < inorderEnd; delimiterIdex++){
            if(inorder[delimiterIdex] == rootValue) break;
        }
        //找到切割点,对中序进行切割
        int leftInorderBegin = inorderBegin;//左中序
        int leftInorderEnd = delimiterIdex;
        int rightInorderBegin = delimiterIdex+1;//右中序
        int rightInorderEnd = inorderEnd;

 

        //对后序进行切割,需要借助一下左中序。这里是因为中序后序切割的两个子数组长度是一致这个原理来
        int leftPostorderBegin = postorderBegin;//注意左闭右开原则
        int leftPostorderEnd = postorderBegin + (delimiterIdex - inorderBegin);
        int rightPostorderBegin = postorderBegin + (delimiterIdex - inorderBegin);
        int rightPostorderEnd = postorderEnd-1;


        //对分割后的中序、后序进行递归
        root->left = traverse(inorder, leftInorderBegin, leftInorderEnd, postorder, leftPostorderBegin, leftPostorderEnd);
        root->right = traverse(inorder, rightInorderBegin, rightInorderEnd, postorder, rightPostorderBegin, rightPostorderEnd);

        return root;
    }
    TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
        if(inorder.size()==0 || postorder.size()==0) return nullptr;
        return traverse(inorder, 0, inorder.size(), postorder, 0, postorder.size());
    }
};
```

由前序、中序构造二叉树代码如下: 

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
 // 前序:中 左 右
 // 中序:左 中 右
class Solution {
public:
    TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
        if(preorder.size() == 0 || inorder.size() == 0) return nullptr;
        
        int rootValue = preorder[0];
        TreeNode *node = new TreeNode(rootValue);
        if(preorder.size() == 1){
            return node;
        }
        
        //在中序中找到切割点
        int delimiterIndex;
        for(delimiterIndex=0; delimiterIndex < inorder.size(); delimiterIndex++){
            if(inorder[delimiterIndex] == rootValue) break;
        }

        //找到切割点后,切割中序成左中序、右中序
        vector<int> leftInorder(inorder.begin(), inorder.begin()+delimiterIndex);
        vector<int> rightInorder(inorder.begin()+delimiterIndex+1, inorder.end());

        //切割前序,结合左中序数组大小
        //前序第一个元素要舍弃
        vector<int> leftPreorder(preorder.begin()+1, preorder.begin()+1+leftInorder.size());
        vector<int> rightPreorder(preorder.begin()+1+leftInorder.size(), preorder.end());

        //递归构造左、右子树
        node->left = buildTree(leftPreorder, leftInorder);
        node->right = buildTree(rightPreorder, rightInorder);

        return node;

    }
};


作者:jasscical
链接:https://leetcode-cn.com/problems/construct-binary-tree-from-inorder-and-postorder-traversal/solution/106you-zhong-xu-hou-xu-lai-gou-zao-er-cha-shu-by-j/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
/**下标索引法
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode(int x) : val(x), left(NULL), right(NULL) {}
 * };
 */
 // 前序:中 左 右
 // 中序:左 中 右
class Solution {
public:
    TreeNode* traverse(vector<int> &preorder, int preorderBegin, int preorderEnd, vector<int> &inorder, int inorderBegin, int inorderEnd){
        if(preorderBegin == preorderEnd) return nullptr;
        
        int rootValue = preorder[preorderBegin];
        TreeNode *node = new TreeNode(rootValue);
        
        if(preorderEnd-preorderBegin == 1) return node;

        //在 中序(左 中 右) 找切割点
        int delimiterIndex;
        for(delimiterIndex=inorderBegin; delimiterIndex < inorderEnd; delimiterIndex++){
            if(inorder[delimiterIndex] == rootValue) break;
        }

        //根据切割点delimiterIndex,切割中序
        //左中序:[左边界,delimiterIndex), 右中序:[delimiterIndex+1,右边界)
        int leftInorder_l = inorderBegin;
        int leftInorder_r = delimiterIndex;
        int rightInorder_l = delimiterIndex+1;
        int rightInorder_r = inorderEnd;

        //根据切割点delimiterIndex,切割前序
        //左前序:[左边界,左中序size+delimiterIndex), 右前序:[delimiterIndex,右边界)
        int leftPreorder_l = preorderBegin+1;
        int leftPreorder_r = preorderBegin+1+(leftInorder_r -leftInorder_l);
        int rightPreorder_l = preorderBegin+1+(leftInorder_r -leftInorder_l);
        int rightPreorder_r = preorderEnd;

        //递归构造 左、右子树
        node->left = traverse(preorder, leftPreorder_l, leftPreorder_r, inorder, leftInorder_l, leftInorder_r);
        node->right = traverse(preorder, rightPreorder_l, rightPreorder_r, inorder, rightInorder_l, rightInorder_r);

        return node;
    }
    TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
        if(preorder.size() == 0 || inorder.size() == 0) return nullptr; 
        return traverse(preorder, 0, preorder.size(), inorder, 0, inorder.size());
    }
};


作者:jasscical
链接:https://leetcode-cn.com/problems/construct-binary-tree-from-inorder-and-postorder-traversal/solution/106you-zhong-xu-hou-xu-lai-gou-zao-er-cha-shu-by-j/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Jasscical

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值