Prometheus提供4种类型Metrics:Counter, Gauge, Summary和Histogram
- Counter可以增长,并且在程序重启的时候会被重设为0,常被用于任务个数,总处理时间,错误个数等只增不减的指标。
- Gauge与Counter类似,唯一不同的是Gauge数值可以减少,常被用于温度、利用率等指标。
- Summary/Histogram概念比较复杂,对于我来说目前没有使用场景,暂无了解。
当Prometheus自带的exporter无法满足实际需求时,需要我们自定义开发监控项
参考
Prometheus-使用python开发exporter
prometheus自定义监控指标——实战
python Django 实现自定义prometheus export
一、简单的示例
1、安装prometheus_client
pip install prometheus_client
2、简单示例
import time
from prometheus_client import Gauge,start_http_server
#custom_test_metric{ labelkey1="labelvalue1",labelkey2="labelvalue2" } 123.0
#指标名:custom_test_metric 标签:labelkey1,labelkey2
g = Gauge('custom_test_metric', 'Desc

本文介绍了如何使用Python的prometheus_client库创建自定义的监控指标,包括Counter和Gauge类型的Metrics。通过示例展示了如何启动HTTP服务器暴露指标,并在Prometheus中配置自定义exporter以收集这些指标。
最低0.47元/天 解锁文章
5460

被折叠的 条评论
为什么被折叠?



