1,数据倾斜解决:
看下key的分布 处理集中的key 原因
1)、key分布不均匀(实际上还是重复) 比如 group by 或者 distinct的时候
2)、数据重复,join 笛卡尔积 数据膨胀 表现 任务进度长时间维持在99%(或100%),查看任务监控页面,发现只有少量(1个或几个)reduce子任务未完成。因为其处理的数据量和其他reduce差异过大。 单一reduce的记录数与平均记录数差异过大,通常可能达到3倍甚至更多。 最长时长远大于平均时长。
解决方案:
1,看下业务上,数据源头能否对数据进行过滤,比如 key为 null的,业务层面进行优化。
2,找到key重复的具体值,进行拆分,hash。异步求和。
Hive调优-作业优化
调整mapper和reducer的数量
太多map导致启动产生过多开销 按照输入数据量大小确定reducer数目
set mapred.reduce.tasks= 默认3
dfs -count /分区目录/* hive.exec.reducers.max设置阻止资源过度消耗
参数调节 set hive.map.aggr = true (hive2默认开启) Map 端部分聚合,相当于Combiner hive.groupby.skewindata=true