Hive-数据倾斜和作业优化

1,数据倾斜解决: 

    看下key的分布 处理集中的key 原因

1)、key分布不均匀(实际上还是重复) 比如 group by 或者 distinct的时候

2)、数据重复,join 笛卡尔积 数据膨胀 表现 任务进度长时间维持在99%(或100%),查看任务监控页面,发现只有少量(1个或几个)reduce子任务未完成。因为其处理的数据量和其他reduce差异过大。 单一reduce的记录数与平均记录数差异过大,通常可能达到3倍甚至更多。 最长时长远大于平均时长。

解决方案:

  1,看下业务上,数据源头能否对数据进行过滤,比如 key为 null的,业务层面进行优化。

  2,找到key重复的具体值,进行拆分,hash异步求和

Hive调优-作业优化

调整mapperreducer的数量

  太多map导致启动产生过多开销 按照输入数据量大小确定reducer数目

  set mapred.reduce.tasks=  默认3

  dfs -count  /分区目录/* hive.exec.reducers.max设置阻止资源过度消耗

  参数调节 set hive.map.aggr = true (hive2默认开启) Map 端部分聚合,相当于Combiner hive.groupby.skewindata=true

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值