Spring AI教程(二)Chat API之流式输出

流式对话

 在快速入门那节中,演示了阻塞式的聊天调用,一般来说,由于网络请求或AI生成的文本过长等因素,会导致阻塞式的聊天调用对用户的体验非常不好。而目前对于对话式的应用场景,主流的调用方式基本采用的是流式对话。什么是流式对话?流失对话的核心就是流式传输,AI的响应数据是一点一点传过来的,不用等AI将文本全部生成出来了才传过来。一定程度上能够提高使用上的响应速度,给用户一个非常好的体验。

 目前流式对话的实现手段主要有两种:SSEWebSocket协议。SSE是基于Http实现的一种服务端向客户端推送消息的技术,WebSocket则是基于TCP协议实现的全双工通信技术。SSE的实现较为简单,而WebSocket较为复杂,且后者对资源的占用率很高。OpenAI官网采用的是SSE实现的。

image.png

 Spring AI中流式对话接口采用的是Spring WebFlux异步网络框架实现的,WebFlux底层默认采用Netty,因此,如果需要了解Spring AI流式对话底层的实现,则需要对异步网络编程有一定的了解。当然,这些并不妨碍我们进行简单的调用。

package com.ningning0111.controller;

import org.springframework.ai.chat.ChatClient;
import 
Java中,要实现实时输出并调用大模型API(如自然语言处理、图像识别等),通常会结合HTTP客户端库(比如Apache HttpClient、OkHttp或Spring Webflux)和异步编程模型(如CompletableFuture或者 reactive streams)。以下是一个基本步骤: 1. **添加依赖**:首先,你需要在项目中引入相应的HTTP请求库。如果是使用Spring框架,可以使用`org.springframework.web.reactive.function.client.WebClient`。 ```java import org.springframework.web.reactive.function.client.WebClient; ``` 2. **创建WebClient实例**:通过`WebClient.create()`初始化一个`WebClient`实例,这是与远程服务交互的基础。 ```java WebClient client = WebClient.builder().baseUrl("https://api.example.com").build(); ``` 3. **编写请求函数**:使用`client`发起GET或POST请求,并处理响应。例如,对于JSON响应,可以使用`retrieve().bodyToFlux(String.class)`获取响应。 ```java Mono<String> responseStream = client.get() .uri(path) .retrieve() .bodyToFlux(String.class); ``` 4. **处理数据**:将返回的数据转换成适合的应用场景,比如解析为JSON对象、逐行读取文本等。这里需要处理大模型API的具体输出。 5. **异步处理**:由于大模型API可能产生大量数据,所以通常需要使用异步操作处理,避免阻塞主线程。 6. **错误处理**:别忘了处理可能出现的异常和错误情况,保证程序健壮性。 7. **关闭连接**:在完成所有操作后,记得关闭`WebClient`,释放资源。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

PG Thinker

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值