矩阵快速幂

关于什么是快速幂:快速幂代码
现在回想下问题斐波那契数列: f ( 1 ) = 1 , f ( 2 ) = 1 f(1) = 1, f(2) = 1 f(1)=1,f(2)=1。在 n > 2 n > 2 n>2时, f ( n ) = f ( n − 1 ) + f ( n − 2 ) f(n) = f(n - 1) + f (n - 2) f(n)=f(n1)+f(n2)。求 f ( n ) f(n) f(n)
朴素动态规划解法:

int fib(int n) {
    int dp[n];
    dp[0] = 1, dp[1] = 1;
    for (int i = 2; i < n; i++) {
        dp[i] = dp[i - 1] + dp[i - 2];
    }
    return dp[n - 1];
}

现在考虑 F n F_{n} Fn是由 F n − 1 F_{n-1} Fn1 F n − 2 F_{n-2} Fn2线性变换得出。则有:
[ F n     F n − 1 ] = [ F n − 1     F n − 2 ] × [ 1 1 1 0 ] [F_{n} \ \ \ F_{n-1}] = [F_{n-1}\ \ \ F_{n-2}] \times \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} [Fn   Fn1]=[Fn1   Fn2]×[1110]
设矩阵 [ 1 1 1 0 ] \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} [1110] P P P
则有
[ F n + 1     F n ] = [ F n     F n − 1 ] × [ 1 1 1 0 ] = [ F n − 1     F n − 2 ] × [ 1 1 1 0 ] 2 = [ F n − 1     F n − 2 ] × P 2 [F_{n+1}\ \ \ F_{n}] = [F_{n} \ \ \ F_{n-1}] \times \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = [F_{n-1}\ \ \ F_{n-2}] \times\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}^2 = [F_{n-1}\ \ \ F_{n-2}] \times P^2 [Fn+1   Fn]=[Fn   Fn1]×[1110]=[Fn1   Fn2]×[1110]2=[Fn1   Fn2]×P2
因为矩阵乘法满足结合律,所以我们可以直接用矩阵 P P P的幂来得到 F n F_n Fn的值。而求矩阵 P n P^n Pn的时间复杂度为 O ( l o g ( n ) ) O(log(n)) O(log(n))
C++代码如下

const int maxn = 105;
struct Matrix{
    int n, m;
    int v[maxn][maxn];
    Matrix(int n, int m) : n(n), m(m) {}

    void init() {
        memset(v, 0, sizeof(v));  
    }

    Matrix operator* (const Matrix B) const {
        Matrix ans(n, B.m); // for ans
        ans.init();
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < B.m; j++) {
                for (int k = 0; k < m; k++) {
                    ans.v[i][j] = ans.v[i][j] + v[i][k] * B.v[k][j];
                }
            }
        }
        return ans;
    }

    void print() {
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                cout << v[i][j] << " ";
            }
            cout << endl;
        }
    }
};

Matrix q_pow (Matrix& A, int b) {
    Matrix ret(A.n, A.m);

    ret.init();
    for (int i = 0; i < ret.n; i++) { // 初始化E
        ret.v[i][i] = 1;
    }

    while (b) {
        if (b & 1) {
            ret = ret * A;
        }
        A = A * A;
        b >>= 1;
    }
    return ret;
}

完整代码如下:

#include <iostream>  
#include <cstdio>
#include <cstring>
using namespace std;
using ll = long long;
const int maxn = 105;
struct Matrix{
    int n, m;
    int v[maxn][maxn];
    Matrix(int n, int m) : n(n), m(m) {}

    void init() {
        memset(v, 0, sizeof(v));  
    }

    Matrix operator* (const Matrix B) const {
        Matrix ans(n, B.m); // for ans
        ans.init();
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < B.m; j++) {
                for (int k = 0; k < m; k++) {
                    ans.v[i][j] = ans.v[i][j] + v[i][k] * B.v[k][j];
                }
            }
        }
        return ans;
    }

    void print() {
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < m; j++) {
                cout << v[i][j] << " ";
            }
            cout << endl;
        }
    }
};

Matrix q_pow (Matrix& A, int b) {
    Matrix ret(A.n, A.m);

    ret.init();
    for (int i = 0; i < ret.n; i++) { // 初始化E
        ret.v[i][i] = 1;
    }

    while (b) {
        if (b & 1) {
            ret = ret * A;
        }
        A = A * A;
        b >>= 1;
    }
    return ret;
}

int fib(int n) {
    int dp[n];
    dp[0] = 1, dp[1] = 1;
    for (int i = 2; i < n; i++) {
        dp[i] = dp[i - 1] + dp[i - 2];
    }
    return dp[n - 1];
}

int main()
{
    int n = 44;
    clock_t startTime, endTime;
    startTime = clock(); // cpu clock time
    cout << fib(n) << endl;
    endTime = clock();
    cout << (endTime - startTime) << endl;
    // [F(n)  F(n - 1)] = [F(n - 1)  F(n - 2)] * [1 1]
    //                                           [1 0]
    Matrix start = Matrix(1, 2);
    start.v[0][0] = 1;
    start.v[0][1] = 1;

    Matrix P = Matrix(2, 2);
    P.v[0][0] = 1;
    P.v[0][1] = 1;
    P.v[1][0] = 1;
    P.v[1][1] = 0;

    startTime = clock(); // cpu clock time
    Matrix ret = start * q_pow(P, n - 1);
    endTime = clock();
    cout << (endTime - startTime) << endl;
    ret.print();
}

这里暂且不考虑溢出问题。当 n n n足够大的时候,可以看到快速幂需要的时钟周期明显缩短。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值