中科大-凸优化 笔记(lec31)-Lagrange对偶(三)

本文介绍了凸优化问题的对偶性质,包括弱对偶性和强对偶性,以及相对内部的概念。重点讨论了Slater条件及其弱化的形式,作为对偶问题强对等性的充分条件。通过线性规划和二次锥规划(QCQP)的实例,阐述了在某些条件下P*(原问题最优值)等于d*(对偶问题最优值)的情况。
摘要由CSDN通过智能技术生成

全部笔记的汇总贴(视频也有传送门):中科大-凸优化

一、对任意优化问题

( P ) min ⁡ f 0 ( x ) s . t .    f i ( x ) ≤ 0 , i = 1 , ⋯   , m        ( P ∗ ) h i ( x ) = 0 , i = 1 , ⋯   , P L ( x , λ , v ) = f 0 ( x ) + ∑ i = 1 m λ i f i ( x ) + ∑ i = 1 P v i h i ( x ) g ( λ , v ) = inf ⁡ x ∈ D L ( x , λ , v ) (P)\min f_0(x)\\s.t.\;f_i(x)\le0,i=1,\cdots,m\;\;\;(P^*)\\h_i(x)=0,i=1,\cdots,P\\L(x,\lambda,v)=f_0(x)+\sum_{i=1}^m\lambda_if_i(x)+\sum_{i=1}^Pv_ih_i(x)\\g(\lambda,v)=\inf_{x\in D}L(x,\lambda,v) (P)minf0(x)s.t.fi(x)0,i=1,,m(P)hi(x)=0,i=1,,PL(x,λ,v)=f0(x)+i=1mλifi(x)+i=1Pvihi(x)g(λ,v)=xDinfL(x,λ,v)

( D ) max ⁡ g ( λ , v ) s . t .    λ ≥ 0 R m + P            d ∗ (D)\max g(\lambda,v)\\s.t.\;\lambda\ge0\\\R^{m+P}\;\;\;\;\;d^* (D)maxg(λ,v)s.t.λ0Rm+Pd

  1. 对偶问题一定是凸优化问题
  2. d ∗ ≤ P ∗ d^*\le P^* dP (weak duality,一定成立)
    d ∗ = P ∗ d^*=P^* d=P (strong duality)
    P ∗ − d ∗ P^*-d^* Pd (duality gap)

D的Relative Interior(相对内部)

Relint D= { x ∈ D ∣ ∃ r > 0 , B ( x , r ) ∩ a f f D ≤ D } \{ x\in D|\exists r>0,B(x,r)\cap aff D\le D\} { x

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值