【论文泛读26】DocBERT:文件分类的最佳实践

该文提出将BERT应用于文档分类任务,通过微调和知识蒸馏,创建了一个小型双向LSTM模型(LSTMreg),在保持竞争力的精度下,实现了30倍的参数压缩和40倍的推理速度提升。研究证明了BERT在文档分类中的有效性,并为后续工作提供了基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

贴一下汇总贴:论文阅读记录

论文链接:《DocBERT: BERT for Document Classification》

一、摘要

据我们所知,我们首次将BERT应用于文档分类。这项任务的一些特点可能会使人认为BERT不是最合适的模型:句法结构对内容类别来说不太重要,文档通常比典型的BERT输入长,文档通常有多个标签。然而,我们表明,使用BERT的简单分类模型能够在四个流行的数据集上达到最先进的水平。为了解决与BERT推理相关的计算开销,我们从BERTlargeto提取知识到小型双向LSTMs,使用30倍少的参数在多个数据集上达到BERTbase奇偶校验。我们论文的主要贡献是改进了基线,为今后的工作奠定了基础。
在这里插入图片描述

二、结论

通过微调BERT来改进文档分类的基线。我们还使用BERTmodels学习的知识来提高单层轻量级BiLSTM模型LSTMreg的有效性,使用知识蒸馏。事实上,我们表明,提取的LSTMregmodel在大多数数据集上实现了BERTbaseparity,在参数数量方面导致超过30倍的压缩,并且推理时间至少快40倍。

两个重要工作:

  • 通过简单地微调BERT来建立文档分类的最新结果
  • 证明BERT可以被提炼成一个更简单的神经模型&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值