贴一下汇总贴:论文阅读记录
论文链接:《Emotion Recognition under Consideration of the Emotion Component Process Model》
一、摘要
文本中的情感分类通常使用神经网络模型执行,该模型学习将语言单元与情感联系起来。虽然这通常会带来良好的预测性能,但它只能在有限程度上帮助理解情绪在各个领域的交流方式。Scherer (2005) 的情感成分过程模型 (CPM) 是一种解释情感交流的有趣方法。它指出情绪是各种子成分对事件的反应的协调过程,即主观感觉、认知评价、表达、生理身体反应和动机行为倾向。我们假设这些成分与语言认识有关:可以通过描述生理反应(“他在颤抖”)来表达情绪,或表达(“她笑了”)等。我们用情感成分类注释现有文献和 Twitter 情感语料库,发现 Twitter 上的情感主要通过事件描述或感觉的主观报告来表达,而在文学中,作者更喜欢描述人物的行为,把解释留给读者。我们进一步将 CPM 包含在多任务学习模型中,并发现这支持情绪分类。带注释的语料库可在 并将解释留给读者。我们进一步将 CPM 包含在多任务学习模型中,并发现这支持情绪分类。带注释的语料库可在 并将解释留给读者。我们进一步将 CPM 包含在多任务学习模型中,并发现这支持情绪分类。带注释的语料库可在:github。