【论文泛读185】考虑情绪成分过程模型的情绪识别

本文探讨了Scherer的CPM模型在情感分析中的作用,通过对Twitter和文学语料库的情感成分注释,发现将CPM纳入多任务学习模型可以提升情感分类效果。文中提出首个带有情感成分注释的数据集,并建议未来工作探索不同领域的情感成分共享以改进分类性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

贴一下汇总贴:论文阅读记录

论文链接:《Emotion Recognition under Consideration of the Emotion Component Process Model》

一、摘要

文本中的情感分类通常使用神经网络模型执行,该模型学习将语言单元与情感联系起来。虽然这通常会带来良好的预测性能,但它只能在有限程度上帮助理解情绪在各个领域的交流方式。Scherer (2005) 的情感成分过程模型 (CPM) 是一种解释情感交流的有趣方法。它指出情绪是各种子成分对事件的反应的协调过程,即主观感觉、认知评价、表达、生理身体反应和动机行为倾向。我们假设这些成分与语言认识有关:可以通过描述生理反应(“他在颤抖”)来表达情绪,或表达(“她笑了”)等。我们用情感成分类注释现有文献和 Twitter 情感语料库,发现 Twitter 上的情感主要通过事件描述或感觉的主观报告来表达,而在文学中,作者更喜欢描述人物的行为,把解释留给读者。我们进一步将 CPM 包含在多任务学习模型中,并发现这支持情绪分类。带注释的语料库可在 并将解释留给读者。我们进一步将 CPM 包含在多任务学习模型中,并发现这支持情绪分类。带注释的语料库可在 并将解释留给读者。我们进一步将 CPM 包含在多任务学习模型中,并发现这支持情绪分类。带注释的语料库可在:github

二、

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值