2023年第三届中国高校大数据挑战赛第二场赛题C:用户对博物馆评论的情感分析(附上代码与详细视频讲解)

问题重述:

博物馆是公共文化服务体系的重要组成部分。国家文物局发布, 2021 年我国新增备案博物馆 395 家,备案博物馆总数达 6183 家,排名全球前列;5605 家博物馆实现免费开放,占比达 90%以上;全国博物馆举办展览 3.6 万个,教育活动 32.3 万场;虽受疫情影响,全国

博物馆仍接待观众 7.79 亿人次。

但在总体繁荣业态下,一些地方博物馆仍存在千馆一面、公共文化服务供给同质化的尴尬局面,在发展定位、体系布局、功能发挥等方面尚需完善提升。这给博物馆基于自身特色进一步迈向真正的公共性提出了新课题,也即坚持守正创新,坚持直面公众和社会的公共文化服务的创造性转化、创新性发展。

为了提升博物馆公共服务水平,课题组收集大众点评平台上用户对南京市朝天宫、瞻园、甘熙宅第、江宁织造博物馆和六朝博物馆五个博物馆的点评数据,数据字段主要包括:用户编号、评论内容、评论时间等。

问题1:针对每位用户的评论,建立情感判别模型,判断评论内容的情感正反方向,输出评论内容的情感方向为正面、中立、负面, 并统计每个博物馆历史评论各个方向情感的比例分布情况。

问题 2:综合考虑评论内容中情感词、程度副词、否定词、标点符合等等影响情感方向的指标,建立情感得分评价模型,得到每位户评论的情感得分,并基于得分对五个博物馆进行客观排名。

问题 3:针对每位用户评论的内容,可通过事件抽取或实体抽取算法,从评论内容中抽取影响用户情感的关键事件或因素,如某用户评论“非常不错!环境高大上!好多是最近房地产开发盖新房子时新挖出来的,不错“,可得知该评论为正面情感,影响其正面评价的是” 房地产开发盖新房子时新挖的“、”环境高大上“两个因素。基于上述抽取的关键事件或影响因素,综合分析得到影响用户对五个博物馆情感的影响因素

问题 4:基于上述分析得到的数据结果,为五个博物馆撰写一段提升公共服务水平的可行性建议,建议要有理有据,且具有一定的可操作性。

问题分析

  1. 建立情感判别模型,对评论内容的情感方向进行分类(正面、中立、负面),并统计每个博物馆历史评论各个方向情感的比例。
  2. 建立情感得分评价模型,考虑情感词、程度副词、否定词、标点符号等因素,为每条评论打分,并基于得分对博物馆进行排名。
  3. 通过事件抽取或实体抽取算法,从评论中抽取影响用户情感的关键事件或因素,分析影响用户情感的因素。
  4. 基于以上分析,为五个博物馆提出提升公共服务水平的可行性建议。

解题代码

使用python脚本对数据集进行分析

import pandas as pd

# 加载数据
data_path = '数据-五个博物馆评论内容.xlsx'
df = pd.read_excel(data_path)

# 数据清洗
# 转换评论星级至正确的比例
df['评论星级(抓取的数据/10=评论星级)'] = df['评论星级(抓取的数据/10=评论星级)'].apply(lambda x: x / 10)

# 确保所有文本字段都是字符串类型
df['评论内容'] = df['评论内容'].astype(str)

# 处理时间数据,这里简单示例,实际情况可能需要根据时间数据的具体乱码情况做更复杂的处理
# 假设我们只是转换时间格式,并忽略乱码问题
df['时间(部分时间有乱码,或无法抓取,是平台后端问题,爬虫无法解决)'] = pd.to_datetime(df['时间(部分时间有乱码,或无法抓取,是平台后端问题,爬虫无法解决)'], errors='coerce')

# 查看处理后的数据
print(df.head())

# 注意:这里的时间处理仅为示例,根据实际乱码情况可能需要更详细的处理步骤

在这里插入图片描述
对于“赞”和“回应”这样的字段,NaN可能表示没有人点赞或回应。在进行数据分析时,我们可以选择将这些NaN值替换为0,表示“没有赞”或“没有回应”,而不是直接删除这些记录。这样,我们可以保留更多的评论数据进行分析,因为评论内容本身对于情感分析来说是最重要的。

# 处理NaN值,将“赞”和“回应”字段中的NaN替换为0
df['赞'].fillna(0, inplace=True)
df['回应'].fillna(0, inplace=True)

# 确认整个数据集处理情况
print(df.describe())  # 展示数据的统计概况来确认处理范围

在这里插入图片描述

# 对整个DataFrame按情感分数排序
df_sorted = df.sort_values(by='情感分数', ascending=False)

# 显示情感分数最高的评论
print("最积极的评论:")
print(df_sorted.iloc[0])

# 显示情感分数最低的评论
print("\n最消极的评论:")
print(df_sorted.iloc[-1])

# 如果想显示更多的积极或消极评论,可以调整iloc的索引,例如使用df_sorted.iloc[:5]来查看前5个最积极的评论

在这里插入图片描述

import jieba

# 自定义情感词典、程度副词典和否定词典
sentiment_dict = {
    "好": 1,
    "高兴": 2,
    "喜欢": 2,
    "棒": 2,
    "不错": 1,
    "差": -2,
    "失望": -2,
    "糟": -2,
    "讨厌": -2,
}

degree_dict = {
    "非常": 1.5,
    "很": 1.2,
    "稍微": 0.8,
    "一点": 0.5,
}

negation_dict = {
    "不": -1,
    "没": -1,
    "无": -1,
}

# 情感得分计算函数
def calculate_sentiment_score(text):
    words = list(jieba.cut(text))
    score = 0
    negation = 1
    degree = 1
    
    for word in words:
        if word in negation_dict:
            negation = -1
        elif word in degree_dict:
            degree = degree_dict[word]
        elif word in sentiment_dict:
            score += sentiment_dict[word] * negation * degree
            # Reset negation and degree
            negation = 1
            degree = 1
            
    return score

# 测试代码
comments = [
    "非常喜欢这个博物馆,展览很棒",
    "不是很好,稍微有点失望",
    "没那么差,但也没有很好",
    "真的很讨厌,完全失望",
]

for comment in comments:
    print(f"评论: {comment}, 情感得分: {calculate_sentiment_score(comment)}")

在这里插入图片描述

import pandas as pd
import jieba


xls = pd.ExcelFile(data_path)

all_museums_df_list = []

for sheet_name in xls.sheet_names:
    df = pd.read_excel(xls, sheet_name=sheet_name)
    df['评论内容'] = df['评论内容'].astype(str)  # 确保评论内容为字符串
    df['情感得分'] = df['评论内容'].apply(calculate_sentiment_score)
    df['博物馆名称'] = sheet_name
    all_museums_df_list.append(df)

all_museums_df = pd.concat(all_museums_df_list, ignore_index=True)

museum_avg_sentiment = all_museums_df.groupby('博物馆名称')['情感得分'].mean()
museum_ranking = museum_avg_sentiment.sort_values(ascending=False)

print("博物馆情感得分排名:")
print(museum_ranking)

在这里插入图片描述

import matplotlib.pyplot as plt

# 已给出的博物馆情感得分排名数据
museum_names = ["江宁织造博物馆", "六朝博物馆", "甘熙宅第", "瞻园", "朝天宫"]
sentiment_scores = [0.557347, 0.539564, 0.454345, 0.425397, 0.335504]
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
# 绘图
plt.figure(figsize=(10, 6))
plt.barh(museum_names, sentiment_scores, color='skyblue')
plt.xlabel('平均情感得分')
plt.title('博物馆情感得分排名')
plt.gca().invert_yaxis()  # 让最高得分的博物馆显示在最上面
plt.grid(axis='x')

# 显示图形
plt.show()

在这里插入图片描述

import pandas as pd
import jieba.analyse



# 初始化一个空字典来存储每个博物馆的关键词
museum_keywords = {}

# 遍历每个sheet
for sheet_name in xls.sheet_names:
    df = pd.read_excel(xls, sheet_name=sheet_name)
    df['评论内容'] = df['评论内容'].astype(str)  # 确保评论内容为字符串类型
    
    # 初始化一个列表来存储当前博物馆的所有关键词
    keywords_list = []
    
    # 提取每条评论的关键词
    for text in df['评论内容']:
        keywords = jieba.analyse.extract_tags(text, topK=5)
        keywords_list.extend(keywords)
    
    # 存储当前博物馆的关键词
    museum_keywords[sheet_name] = keywords_list

# 汇总分析结果
for museum, keywords in museum_keywords.items():
    print(f"博物馆: {museum}, 关键词: {set(keywords)}")

在这里插入图片描述

详细的视频讲解(代码文件内附视频讲解)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 24
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
很抱歉,我是一个语言模型,无法运行代码和进行数据爬取。但我可以给你提供一个大致的思路和代码框架。 1. 爬取淘宝数据 可以使用Python的requests和BeautifulSoup库来爬取淘宝商品数据。具体步骤如下: - 打开淘宝网,搜索关键词。 - 获取搜索结果页面的HTML代码。 - 解析HTML代码,提取商品信息,如商品名称、价格、销量、评价等。 - 将提取的商品信息存储到本地文件或数据库中。 2. 数据分析 可以使用Python的numpy、pandas和matplotlib等库来进行数据分析。具体步骤如下: - 读取爬取到的淘宝商品数据。 - 对商品数据进行清洗和预处理,如去除重复数据、处理缺失值等。 - 分析商品数据的特征,如价格分布、销量分布、评价分布等。 - 探索商品数据之间的关系,如价格与销量、价格与评价等。 - 根据分析结果,提取出向用户推荐商品的规律。 3. 用户特征 可以通过分析用户的搜索关键词、点击商品、购买记录等来获取用户的特征。具体步骤如下: - 获取用户的搜索记录、点击记录、购买记录等。 - 对用户数据进行清洗和预处理,如去除重复数据、处理缺失值等。 - 分析用户数据的特征,如搜索关键词的频率分布、点击商品的类型分布、购买记录的价格分布等。 - 根据分析结果,提取出用户的特征。 代码框架: ```python import requests from bs4 import BeautifulSoup import pandas as pd import numpy as np import matplotlib.pyplot as plt # 爬取淘宝数据 def crawl_taobao_data(keyword): # 构造请求URL url = 'https://s.taobao.com/search?q=' + keyword # 发送HTTP请求,获取搜索结果页面的HTML代码 response = requests.get(url) html = response.text # 解析HTML代码,提取商品信息 soup = BeautifulSoup(html, 'html.parser') items = soup.find_all('div', {'class': 'item'}) # 将提取的商品信息存储到本地文件或数据库中 for item in items: name = item.find('div', {'class': 'title'}).text.strip() price = item.find('strong').text sales = item.find('div', {'class': 'deal-cnt'}).text rating = item.find('div', {'class': 'rating'}).text # 存储商品信息 # ... # 数据分析 def analyze_data(data): # 数据清洗和预处理 # ... # 分析商品数据的特征 # ... # 探索商品数据之间的关系 # ... # 根据分析结果,提取出向用户推荐商品的规律 # ... # 用户特征 def user_feature(data): # 获取用户的搜索记录、点击记录、购买记录等 # ... # 数据清洗和预处理 # ... # 分析用户数据的特征 # ... # 根据分析结果,提取出用户的特征 # ... if __name__ == '__main__': # 爬取淘宝数据 data = crawl_taobao_data('手机') # 数据分析 analyze_data(data) # 用户特征 user_feature(data) ``` 注:以上代码仅为伪代码,需要根据实际需求进行修改和完善。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值