数模方法论-线性规划

一、基本概念

        在实际生产过程中,人们经常面临如何有效利用现有资源来安排生产,以实现最大经济效益的问题。这类问题构成了运筹学的一个重要分支——数学规划,而线性规划(Linear Programming, LP)是数学规划中的一个关键领域。线性规划是一种用于解决优化问题的数学方法,其主要目标是最大化或最小化一个线性目标函数,同时满足一系列线性约束条件。

目标函数

          线性规划的目标是优化一个线性目标函数。假设有n个决策变量x_1, x_2, \ldots, x_n,目标函数可以表示为:

\text{Maximize (or Minimize)} \quad z = c_1 x_1 + c_2 x_2 + \cdots + c_n x_n

        其中,c_1, c_2, \ldots, c_n是目标函数的系数。

约束条件

线性规划问题需要满足一组线性约束条件。这些约束条件可以是以下形式的线性不等式或等式:

a_{11} x_1 + a_{12} x_2 + \cdots + a_{1n} x_n \leq b_1\\ a_{21} x_1 + a_{22} x_2 + \cdots + a_{2n} x_n \leq b_2\\ \vdots\\ a_{m1} x_1 + a_{m2} x_2 + \cdots + a_{mn} x_n \leq b_m

        其中,a_{ij}是约束条件中的系数,b_i 是约束条件的常数项。

非负约束

        通常情况下,线性规划问题要求所有的决策变量都是非负的,即:

x_i \geq 0 \quad \text{for} \; i = 1, 2, \ldots, n

标准形式

        为了便于求解,线性规划问题通常会被转化为标准形式。标准形式要求:

  • 目标函数为最大化形式:

\text{Maximize} \quad z = c_1 x_1 + c_2 x_2 + \cdots + c_n x_n \\

  • 所有约束条件为等式形式:

a_{11} x_1 + a_{12} x_2 + \cdots + a_{1n} x_n = b_1 \\ a_{21} x_1 + a_{22} x_2 + \cdots + a_{2n} x_n = b_2 \\ \quad \vdots \\ a_{m1} x_1 + a_{m2} x_2 + \cdots + a_{mn} x_n = b_m \\

  • 所有决策变量非负:

x_i > 0 \quad \text{for} \ i = 1, 2, \ldots, n

图1 《数学建模算法与应用》(第二版)中的例题

二、求解方法

线性规划的求解方法包括:

  • 单纯形法(Simplex Method):这是最常用的线性规划求解方法,通过在一个多面体的顶点上移动来寻找最优解。
  • 内点法(Interior-Point Method):这是一种通过迭代在可行区域的内部寻找最优解的方法,适用于大规模问题。

现在的数模竞赛都是使用软件进行求解,首先需要列出线性规划的标准形式,然后再编写求解程序,例如求解以下线性规划问题:

1、将问题转化成标准形式

2、编写求解代码

Python代码:

import numpy as np
from scipy.optimize import linprog

# 定义目标函数系数
f = [-2, -3, 5]

# 定义约束矩阵和约束向量
A = [[-2, 5, -1], [1, 3, 1]]
b = [-10, 12]

# 定义等式约束矩阵和等式约束向量
A_eq = [[1, 1, 1]]
b_eq = [7]

# 调用 linprog 进行线性规划
result = linprog(c=f, A_ub=A, b_ub=b, A_eq=A_eq, b_eq=b_eq, bounds=[(0, None)]*3)

# 提取结果
x = result.x
y = -result.fun

print("x:", x)
print("y:", y)

matlab代码: 

f=[-2; -3; 5];
a=[-2,5,-1;1,3,1]; b=[-10;12];
aeq=[1,1,1];
beq=7;
[x,y]=linprog(f,a,b,aeq,beq,zeros(3,1));
x, y=-y

三、应用实例

线性规划可以应用于多个实际问题,包括:

  • 生产调度:如何安排生产以最小化成本或最大化利润。
  • 运输问题:如何将货物从多个供应点运输到多个需求点,以最小化运输成本。
  • 金融投资:如何在不同的投资组合中分配资金,以最大化收益或最小化风险。

1、生产调度问题

        农作物的种植策略(2024国赛c题目):该问题可以使用线性规划来求解,思路可参考下面的文章2024 年高教社杯全国大学生数学建模竞赛C题—农作物的种植策略(讲解+代码+成品论文助攻,均已更新完毕)_农作物的替补与互补性-CSDN博客icon-default.png?t=O83Ahttps://blog.csdn.net/qq_41489047/article/details/141961294

2、投资的收益和风险

 1、问题假设(符合假设和条件假设)

  2、模型分析与建立

 

 

3、 模型求解

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import linprog

# 初始化变量
a = 0

# 准备绘图
plt.figure()
plt.ion()  # 开启交互模式

while a < 0.05:
    # 定义目标函数系数
    c = [-0.05, -0.27, -0.19, -0.185, -0.185]

    # 定义不等式约束矩阵和向量
    A = np.hstack((np.zeros((4, 1)), np.diag([0.025, 0.015, 0.055, 0.026])))
    b = a * np.ones(4)

    # 定义等式约束矩阵和向量
    A_eq = [1, 1.01, 1.02, 1.045, 1.065]
    b_eq = 1

    # 定义下界
    bounds = [(0, None)] * 5

    # 求解线性规划
    result = linprog(c, A_ub=A, b_ub=b, A_eq=[A_eq], b_eq=[b_eq], bounds=bounds)
    
    # 提取结果
    x = result.x
    Q = -result.fun

    # 绘图
    plt.plot(a, Q, '*k')
    
    # 更新变量
    a += 0.001

# 设置标签和标题
plt.xlabel('a')
plt.ylabel('Q')
plt.show()

matlab代码:

clc,clear
a=0;
hold on
while a<0.05
    c=[-0.05,-0.27,-0.19,-0.185,-0.185];
    A=[zeros(4,1),diag([0.025,0.015,0.055,0.026])];
    b=a*ones(4,1);
    Aeq=[1,1.01,1.02,1.045,1.065];
    beq=1;
    LB=zeros(5,1);
    [x,Q]=linprog(c,A,b,Aeq,beq,LB);
    Q=-Q;
    plot(a,Q,'*k');
    a=a+0.001;
end
xlabel('a'),ylabel('Q')

4、分析结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值