win10 gt520+p106双卡测试

安装391.35驱动失败,虽然gpuz和设备管理器显示正常但没有nvidia控制面板

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

重启进安全模式,ddu卸载,再次重启到安全模式,安装391.01驱动,显示3dvision安装失败,重启再看已经有nvidia控制面板了
在这里插入图片描述
修改p106注册表
AdapterType 1
EnableMsHybrid 1

计算机\HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Class\{4d36e968-e325-11ce-bfc1-08002be10318}\0001

在这里插入图片描述

在这里插入图片描述
修改gt520注册表,没有就新建
AdapterType 4
EnableMsHybrid 2

在这里插入图片描述

设备管理器禁用显卡再启用
在这里插入图片描述

打开控制面板,修改cuda-gpus,只勾选p106,openGL渲染修改p106,点应用
在这里插入图片描述

再设置physX处理器为p106,点应用
在这里插入图片描述

测试辐射4可以调用p106
在这里插入图片描述

### P106 GPU 配置的最佳性能与性价比分析 对于 P106 GPU 配置,最佳性能和性价比的实现取决于多个因素,包括硬件兼容性、散热设计以及软件优化能力。以下是几个关键点: #### 1. **硬件选择** P106 是一种基于 Pascal 架构的显,通常用于数据中心环境下的计算任务而非游戏场景。为了最大化其性能表现,在构建 GPU 平台时需注意以下几点: - 主板支持:确保主板具备足够的 PCIe 插槽数量和支持多路 GPU 运行的能力[^2]。 - 散热解决方案:由于 P106本身发热量较大,因此在搭建系统时应优先考虑具有高效风道设计的工作站级机箱。 #### 2. **驱动程序与固件更新** 保持最新的 NVIDIA 数据中心系列驱动版本至关重要,因为新发布的驱动往往包含针对特定工作负载(如深度学习推理或计算机视觉应用)所做的针对性改进[^1]。此外,定期检查 BIOS 和其他相关组件是否存在可用升级同样有助于提升整体稳定性及效率水平。 #### 3. **软件层面调优** 当涉及到具体应用场景比如单张图片深度估计时,则可以通过采用轻量化网络结构来达到更好的资源利用率目的[^5]: ```python import tensorflow as tf from tensorflow.keras import layers def create_lightweight_model(input_shape=(None,None,3)): model = tf.keras.Sequential([ layers.Conv2D(filters=8,kernel_size=(3,3),activation='relu',padding="same",input_shape=input_shape), layers.MaxPooling2D(pool_size=(2,2)), layers.Flatten(), layers.Dense(units=128, activation='relu'), layers.Dropout(rate=0.5), layers.Dense(units=1) ]) return model ``` 此代码片段展示了一个简单的卷积神经网络架构实例,适用于移动端设备上的实时处理需求。通过减少参数数量并引入 dropout 层等方式降低复杂度的同时维持较高精度。 #### 4. **跨平台移植考量** 如果计划将训练好的模型部署到 Android 或 iOS 移动端上,则需要特别关注以下几个方面以保证良好的用户体验效果[^4]: - 权重压缩技术的应用; - 利用目标操作系统的专用加速库(Metal Performance Shaders 对于苹果产品线而言尤为重要); 综上所述,构建一套兼具高性能与经济实惠特性的 P106 Dual-GPU 解决方案不仅涉及精心挑选物理部件组合,还需要深入理解所面临的具体业务挑战,并据此制定相应的策略措施加以应对。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值