上题
第一题
有效 IP 地址 正好由四个整数(每个整数位于 0 到 255 之间组成,且不能含有前导 0),整数之间用 '.' 分隔。
例如:"0.1.2.201" 和 "192.168.1.1" 是 有效 IP 地址,但是 "0.011.255.245"、"192.168.1.312" 和 "192.168@1.1" 是 无效 IP 地址。
给定一个只包含数字的字符串 s ,用以表示一个 IP 地址,返回所有可能的有效 IP 地址,这些地址可以通过在 s 中插入 '.' 来形成。你 不能 重新排序或删除 s 中的任何数字。你可以按 任何 顺序返回答案。
示例 1:
输入:s = "25525511135"
输出:["255.255.11.135","255.255.111.35"]
示例 2:
输入:s = "0000"
输出:["0.0.0.0"]
示例 3:
输入:s = "101023"
输出:["1.0.10.23","1.0.102.3","10.1.0.23","10.10.2.3","101.0.2.3"]
思路
- 老一套的回溯,用res记录结果,当len(res) == 4且i恰好等于字符串长度len(s)时,就是满足条件的一个IP
- 每个IP的整数位在[0,255]之间且不能含有前导0,但是可以是单个0,所以可以得到判断条件:
- s[i:j+1] <= 255
- s[i] != 0 或者 i == j,i==j时不管是不是0都能直接取,如果是前导0后续的循环仍会判断首位是否是0
代码
class Solutio:
"""
有效 IP 地址 正好由四个整数(每个整数位于 0 到 255 之间组成,且不能含有前导 0),整数之间用 '.' 分隔。
例如:"0.1.2.201" 和 "192.168.1.1" 是 有效 IP 地址,但是 "0.011.255.245"、"192.168.1.312" 和 "192.168@1.1" 是 无效 IP 地址。
给定一个只包含数字的字符串 s ,用以表示一个 IP 地址,返回所有可能的有效 IP 地址,这些地址可以通过在 s 中插入 '.' 来形成。你 不能 重新排序或删除 s 中的任何数字。你可以按 任何 顺序返回答案。
示例 1:
输入:s = "25525511135"
输出:["255.255.11.135","255.255.111.35"]
示例 2:
输入:s = "0000"
输出:["0.0.0.0"]
示例 3:
输入:s = "101023"
输出:["1.0.10.23","1.0.102.3","10.1.0.23","10.10.2.3","101.0.2.3"]
"""
def restoreIpAddresses(self, s):
result = []
res = []
n = len(s)
def dfs(i):
d = len(res)
if i == n and d == 4:
# print(res)
re = '.'.join(res)
result.append(re)
return
if d > 4:
return
for j in range(i, min(i + 3, n)):
if int(s[i:j + 1]) < 256 and (s[i] != '0' or i == j):
res.append(s[i:j + 1])
dfs(j + 1)
res.pop()
dfs(0)
return result
if __name__ == '__main__':
test = Solutio()
s = ['25525511135', '0000', '101023', '025514255']
for i in s:
print(test.restoreIpAddresses(i))
第二题
给你一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的
子集
(幂集)。
解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。
示例 1:
输入:nums = [1,2,3]
输出:[[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]
示例 2:
输入:nums = [0]
输出:[[],[0]]
思路
全列举并且包含空集,那在每次进入递归函数时添加一次结果即可
代码
class Solution:
"""
给你一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的
子集
(幂集)。
解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。
示例 1:
输入:nums = [1,2,3]
输出:[[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]
示例 2:
输入:nums = [0]
输出:[[],[0]]
"""
def subsets(self, nums):
result = []
res = []
n = len(nums)
def dfs(i):
result.append(res.copy())
if i == n:
return
for j in range(i, n):
res.append(nums[j])
dfs(j+1)
res.pop()
dfs(0)
return result
if __name__ == '__main__':
test = Solution()
nums = [[1, 2, 3], [0]]
for i in nums:
print(test.subsets(i))
第三题
给你一个整数数组 nums ,其中可能包含重复元素,请你返回该数组所有可能的子集(幂集)。
解集 不能 包含重复的子集。返回的解集中,子集可以按 任意顺序 排列。
示例 1:
输入:nums = [1,2,2]
输出:[[],[1],[1,2],[1,2,2],[2],[2,2]]
示例 2:
输入:nums = [0]
输出:[[],[0]]
思路
可能有相同的元素,只需要对列表排序然判断当前元素是否与上个元素相同,相同则跳过
代码
class Solution:
"""
给你一个整数数组 nums ,其中可能包含重复元素,请你返回该数组所有可能的子集(幂集)。
解集 不能 包含重复的子集。返回的解集中,子集可以按 任意顺序 排列。
示例 1:
输入:nums = [1,2,2]
输出:[[],[1],[1,2],[1,2,2],[2],[2,2]]
示例 2:
输入:nums = [0]
输出:[[],[0]]
"""
def subsetsWithDup(self, nums):
result = []
res = []
n = len(nums)
def dfs(i):
result.append(res.copy())
if i == n:
return
for j in range(i, n):
if j > i and nums[j] == nums[j - 1]:
continue
res.append(nums[j])
dfs(j + 1)
res.pop()
nums.sort()
dfs(0)
return result
if __name__ == '__main__':
test = Solution()
nums = [[1, 2, 2], [0]]
for i in nums:
print(test.subsetsWithDup(i))
总结
回溯的套路已经深记脑子。。。。。。