问题 1427: [蓝桥杯][2013年第四届真题]买不到的数目

https://www.dotcpp.com/oj/problem1427.html

题目描述

小明开了一家糖果店。他别出心裁:把水果糖包成4颗一包和7颗一包的两种。糖果不能拆包卖。
小朋友来买糖的时候,他就用这两种包装来组合。当然有些糖果数目是无法组合出来的,比如要买  10  颗糖。
你可以用计算机测试一下,在这种包装情况下,最大不能买到的数量是17。大于17的任何数字都可以用4和7组合出来。
本题的要求就是在已知两个包装的数量时,求最大不能组合出的数字。

输入

两个正整数,表示每种包装中糖的颗数(都不多于1000) 

输出

一个正整数,表示最大不能买到的糖数 

样例输入

4  7 

样例输出

17

解题思路:

用题目中给出的7和4来举例,当一个数k<7时,只能用4,除了4其他的都无法组成;

当7<k<14时,k%4=3时都会有解,假设此时有x=k/4,则4*x+3=k,即4*(x-1)+7=k;

当14<k<21时,k%4=3有解,k%3=2有解,同样道理,4*(x-3)+2*7=k;

当k>21时,就是所有的数都可以组成了,因为4的余数已经用完了。

那么此时不能组成的最大数是只能k%4=1的数,为17.

其实得到有一个公式(m-1)*n-m;

也就是两者之积减两者之和,有一个前提就是两个数互质,这道题没有给出,否则两个偶数的答案就是无限大的奇数了。

#include <bits/stdc++.h>
using namespace std;
int main()
{
	int n, m;
	while(scanf("%d%d", &n, &m)!=EOF){
		if(m*n-(m+n)<0)
			printf("0\n");
		else printf("%d\n", m*n-(m+n));
	}
	return 0;
}

 

### 关于蓝桥杯2023第十四届省赛真题——飞机降落 #### 题目描述 在一个机场有N架飞机等待着陆。每架飞机有一个最晚到达时间`ti`,表示这架飞机必须在这个时刻之前完成着陆操作;还有一个准备就绪的时间`ri`,意味着它可以在该时间之后立即尝试着陆。为了简化问题模型,假设每次着陆过程瞬间完成,并且同一时间内只能有一架飞机成功着陆。 现在给出所有待降飞机的信息列表,请问最多可以让多少架飞机顺利安全地着陆?[^1] #### 解决方案概述 此问题可以通过深度优先搜索(DFS)来解决。通过遍历所有可能的选择组合,找到能够使尽可能多的飞机按时着陆的最佳策略。具体来说,在处理每一架新飞机时,有两种可能性:要么让当前考虑中的飞机着陆(如果条件允许),要么跳过它继续考察其他未被选择过的飞机。这种思路被称为“爆搜”,因为它涉及到了对所有潜在解决方案空间进行全面探索的过程[^4]。 #### 实现细节 下面是一个基于上述逻辑实现的具体算法框架: ```cpp #include <iostream> using namespace std; const int MAX_N = 1e5 + 7; int n, ans = 0, cnt = 0; pair<int,int> a[MAX_N]; // 存储每个航班的 (ready time ri , deadline ti) bool used[MAX_N]; void dfs(int curTime){ if(cnt > ans) ans = cnt; // 更新最大可容纳数量 for(int i=1 ; i<=n ; ++i){ if(!used[i]){ if(a[i].first >= curTime && a[i].second >= a[i].first){ used[i] = true; ++cnt; dfs(max(curTime,a[i].first)+1); --cnt; used[i] = false; } } } } int main(){ cin >> n; for(int i=1 ; i<=n ; ++i){ cin>>a[i].first>>a[i].second; } sort(a+1,a+n+1); dfs(0); cout << "Maximum number of planes that can land safely is:"<<ans<<endl; } ``` 这段代码首先读取输入数据并初始化必要的变量。接着定义了一个名为 `dfs()` 的函数来进行递归调用,模拟同情况下哪些飞机可以选择着陆。最后输出的是能保证全部安全着陆的最大飞机数目
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张宜强

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值