需求七:最近连续3周活跃用户数

该博客介绍了如何使用Hive进行数据统计,特别是针对最近连续3周活跃用户的计算。首先,定义了DWS层的周活跃用户明细表,然后在ADS层创建导入表并插入2019-02-20周的数据。接着,展示了编写自动化脚本的步骤,包括设置统计日期、执行Hive SQL以及查询结果。最后,讨论了在企业环境中脚本的执行时间通常为每周一凌晨。
摘要由CSDN通过智能技术生成

需求七:最近连续3周活跃用户

最近3周连续活跃的用户:通常是周一对前3周的数据做统计,该数据一周计算一次。

13.1 DWS

使用周活明细表dws_uv_detail_wk作为DWS层数据

13.2 ADS层

1)建表语句

hive (gmall)>
drop table if exists ads_continuity_wk_count;
create external table ads_continuity_wk_count( 
    `dt` string COMMENT '统计日期,一般用结束周周日日期,如果每天计算一次,可用当天日期',
    `wk_dt` string COMMENT '持续时间',
    `continuity_count` bigint
) 
row format delimited fields terminated by '\t'
location '/warehouse/gmall/ads/ads_continuity_wk_count';

2)导入2019-02-20所在周的数据

hive (gmall)>
insert into table ads_continuity_wk_count
select 
     '2019-02-20',
     concat(date_add(next_day('2019-02-20','MO'),-7*3),'_',date_add(next_day('2019-02-20','MO'),-1)),
     count(*)
from 
(
    select mid_id
    from dws_uv_detail_wk
    where wk_dt>=concat(date_add(next_day('2019-02-20','MO'),-7*3),'_',date_add(next_day('2019-02-20','MO'),-7*2-1)) 
    and wk_dt<=concat(date_add(next_day('2019-02-20','MO'),-7),'_',date_add(next_day('2019-02-20','MO'),-1))
    group by mid_id
    having count(*)=3
)t1;

3)查询

hive (gmall)> select * from ads_continuity_wk_count;

13.3 编写脚本

1)在hadoop102的/home/atguigu/bin目录下创建脚本

[atguigu@hadoop102 bin]$ vim ads_continuity_wk_log.sh

在脚本中编写如下内容

#!/bin/bash

if [ -n "$1" ];then
	do_date=$1
else
	do_date=`date -d "-1 day" +%F`
fi

hive=/opt/module/hive/bin/hive
APP=gmall

echo "-----------导入日期$do_date-----------"

sql="
insert into table "$APP".ads_continuity_wk_count
select 
     '$do_date',
     concat(date_add(next_day('$do_date','MO'),-7*3),'_',date_add(next_day('$do_date','MO'),-1)),
     count(*)
from 
(
    select mid_id
    from "$APP".dws_uv_detail_wk
    where wk_dt>=concat(date_add(next_day('$do_date','MO'),-7*3),'_',date_add(next_day('$do_date','MO'),-7*2-1)) 
    and wk_dt<=concat(date_add(next_day('$do_date','MO'),-7),'_',date_add(next_day('$do_date','MO'),-1))
    group by mid_id
    having count(*)=3
)t1;"

$hive -e "$sql"

2)增加脚本执行权限

[atguigu@hadoop102 bin]$ chmod 777 ads_continuity_wk_log.sh

3)脚本使用

[atguigu@hadoop102 module]$ ads_continuity_wk_log.sh 2019-02-20

4)查询结果

hive (gmall)> select * from ads_continuity_wk_count;

5)脚本执行时间

企业开发中一般在每周一凌晨30分~1点

一、课程简介随着技术的飞速发展,经过多年的数据积累,各互联网公司已保存了海量的原始数据和各种业务数据,所以数据仓库技术是各大公司目前都需要着重发展投入的技术领域。数据仓库是面向分析的集成化数据环境,为企业所有决策制定过程,提供系统数据支持的战略集合。通过对数据仓库中数据的分析,可以帮助企业改进业务流程、控制成本、提高产品质量等。二、课程内容本次精心打造的数仓项目的课程,从项目架构的搭建,到数据采集模块的设计、数仓架构的设计、实战需求实现、即席查询的实现,我们针对国内目前广泛使用的Apache原生框架和CDH版本框架进行了分别介绍,Apache原生框架介绍中涉及到的技术框架包括Flume、Kafka、Sqoop、MySql、HDFS、Hive、Tez、Spark、Presto、Druid等,CDH版本框架讲解包括CM的安装部署、Hadoop、Zookeeper、Hive、Flume、Kafka、Oozie、Impala、HUE、Kudu、Spark的安装配置,透彻了解不同版本框架的区别联系,将大数据全生态系统前沿技术一网打尽。在过程中对大数据生态体系进行了系统的讲解,对实际企业数仓项目中可能涉及到的技术点都进行了深入的讲解和探讨。同时穿插了大量数仓基础理论知识,让你在掌握实战经验的同时能够打下坚实的理论基础。三、课程目标本课程以国内电商巨头实际业务应用场景为依托,对电商数仓的常见实战指标以及难点实战指标进行了详尽讲解,具体指标包括:每日、、月活跃设备明细,留存用户比例,沉默用户、回流用户、流失用户统计,最近连续3活跃用户统计,最近7天内连续3天活跃用户统计,GMV成交总额分析,转化率及漏斗分析,品牌复购率分析、订单表拉链表的设计等,让学生拥有更直观全面的实战经验。通过对本课程的学习,对数仓项目可以建立起清晰明确的概念,系统全面的掌握各项数仓项目技术,轻松应对各种数仓难题。四、课程亮点本课程结合国内多家企业实际项目经验,特别加入了项目架构模块,从集群规模的确定到框架版本选型以及服务器选型,手把手教你从零开始搭建大数据集群。并且总结大量项目实战中会遇到的问题,针对各个技术框架,均有调优实战经验,具体包括:常用Linux运维命令、Hadoop集群调优、Flume组件选型及性能优化、Kafka集群规模确认及关键参数调优。通过这部分学习,助学生迅速成长,获取前沿技术经验,从容解决实战问题。
本教程为授权出品 一、课程简介数据仓库(Data Warehouse,可简写为DW或DWH),是面向分析的集成化数据环境,为企业决策制定过程,提供系统数据支持的战略集合,是国内外各大公司正在重点投入的战略级技术领域。 二、课程内容《大数据电商数仓项目实战》视频教程,从项目架构的搭建,到数据采集模块的设计、数仓架构的设计、实战需求实现、即席查询的实现,我们针对国内目前广泛使用的Apache原生框架和CDH版本框架进行了分别介绍,Apache原生框架介绍中涉及到的技术框架包括Flume、Kafka、Sqoop、MySql、HDFS、Hive、Tez、Spark、Presto、Druid等,CDH版本框架讲解包括CM的安装部署、Hadoop、Zookeeper、Hive、Flume、Kafka、Oozie、Impala、HUE、Kudu、Spark的安装配置,透彻了解不同版本框架的区别联系,将大数据全生态系统前沿技术一网打尽。在过程中对大数据生态体系进行了系统的讲解,对实际企业数仓项目中可能涉及到的技术点都进行了深入的讲解和探讨。同时穿插了大量数仓基础理论知识,让你在掌握实战经验的同时能够打下坚实的理论基础。 三、课程目标本课程以国内电商巨头实际业务应用场景为依托,对电商数仓的常见实战指标以及难点实战指标进行了详尽讲解,具体指标包括:每日、、月活跃设备明细,留存用户比例,沉默用户、回流用户、流失用户统计,最近连续3活跃用户统计,最近7天内连续3天活跃用户统计,GMV成交总额分析,转化率及漏斗分析,品牌复购率分析、订单表拉链表的设计等,让学生拥有更直观全面的实战经验。通过对本课程的学习,对数仓项目可以建立起清晰明确的概念,系统全面的掌握各项数仓项目技术,轻松应对各种数仓难题。 四、课程亮点本课程结合国内多家企业实际项目经验,特别加入了项目架构模块,从集群规模的确定到框架版本选型以及服务器选型,手把手教你从零开始搭建大数据集群。并且总结大量项目实战中会遇到的问题,针对各个技术框架,均有调优实战经验,具体包括:常用Linux运维命令、Hadoop集群调优、Flume组件选型及性能优化、Kafka集群规模确认及关键参数调优。通过这部分学习,助学生迅速成长,获取前沿技术经验,从容解决实战问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值