bzoj2301&洛谷p2522 [HAOI2011]Problem b

题目描述

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。

输入输出格式

输入格式:

第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

输出格式:

共n行,每行一个整数表示满足要求的数对(x,y)的个数

输入输出样例

输入样例#1: 复制
2
2 5 1 5 1
1 5 1 5 2
输出样例#1: 复制
14
3

说明

100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000


题解:







代码:

#include<bits/stdc++.h>
using namespace std;
int n1=100001,k,tot,g[200001],pri[200001],mu[200001],sum[200001];
void shai(){
	int i,j;
	mu[1]=1;sum[1]=1;
	for(i=2;i<=n1;i++){
		if(!g[i]){
			pri[++tot]=i;
			mu[i]=-1;
		}
		for(j=1;pri[j]*i<=n1;j++){
			g[pri[j]*i]=1;
			if(!(i%pri[j])){
				mu[i*pri[j]]=0;
				break;
			}
			mu[i*pri[j]]=-mu[i];
		}
	}
	for(i=2;i<=n1;i++)sum[i]=sum[i-1]+mu[i];
}
int solve(int a,int b){
	int l,r,ans=0;
	if(a>b)swap(a,b);
	for(l=1,r=0;l<=a;l=r+1){
			r=min(a/(a/l),b/(b/l));
			ans+=(a/l)*(b/l)*(sum[r]-sum[l-1]);
		}
	return ans;	
}
int main(){
	int t1,a,b,c,d;
	shai();
	scanf("%d",&t1);
	while(t1--){
		scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
		a--;c--;
		a/=k;b/=k;c/=k;d/=k;
		printf("%d\n",solve(b,d)+solve(a,c)-solve(a,d)-solve(c,b));
	}
}

发布了205 篇原创文章 · 获赞 3 · 访问量 2万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览