题目描述
对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。
输入输出格式
输入格式:第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k
输出格式:共n行,每行一个整数表示满足要求的数对(x,y)的个数
输入输出样例
说明
100%的数据满足:1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000
题解:
代码:
#include<bits/stdc++.h>
using namespace std;
int n1=100001,k,tot,g[200001],pri[200001],mu[200001],sum[200001];
void shai(){
int i,j;
mu[1]=1;sum[1]=1;
for(i=2;i<=n1;i++){
if(!g[i]){
pri[++tot]=i;
mu[i]=-1;
}
for(j=1;pri[j]*i<=n1;j++){
g[pri[j]*i]=1;
if(!(i%pri[j])){
mu[i*pri[j]]=0;
break;
}
mu[i*pri[j]]=-mu[i];
}
}
for(i=2;i<=n1;i++)sum[i]=sum[i-1]+mu[i];
}
int solve(int a,int b){
int l,r,ans=0;
if(a>b)swap(a,b);
for(l=1,r=0;l<=a;l=r+1){
r=min(a/(a/l),b/(b/l));
ans+=(a/l)*(b/l)*(sum[r]-sum[l-1]);
}
return ans;
}
int main(){
int t1,a,b,c,d;
shai();
scanf("%d",&t1);
while(t1--){
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
a--;c--;
a/=k;b/=k;c/=k;d/=k;
printf("%d\n",solve(b,d)+solve(a,c)-solve(a,d)-solve(c,b));
}
}