文章目录
Sklearn工具(第二天)
一、Python科学计算环境Final
1、为什么选择python?
Pthon是跨平台语言,科学计算编程语言的要求:易学,易用,可读,很多工具库。
2、Python科学计算环境
python的科学计算环境:numpy, scipy, matplotlib, Scikit-Learn, Scikit-Image, Pandas
(1)Numpy:基于Python的数值计算包,用于存储操作多维数组
(2)scipy:基于Numpy设计的用于科学计算和工程设计的开发包
(3)matplotlib:绘制二维图像
(4)Scikit Learn整体结构介绍
(5)Pandas:数据分析(提供高效地数据结构和数据分析工具)
3、开发环境搭建
(1)安装Anaconda
(2)安装PyCharm
(3)配置环境
二、SKLearn算法库的顶层设计
(一)SKLearn包含了哪些模块
(1)监督学习的各个模块
(2)SKLearn无监督学习模块
(3)SKLearn数据变换模块
(二)SKLearn中算法的继承关系
SKLearn算法类顶层设计图
(三)SKLearn六大板块统一API(调用接口)
(1)分类,回归, 聚类, 维数约简, 特征抽取选择,数据预处理
SKLearn监督学习工作流程
SKLearn无监督学习工作流程
(2) 数据预处理工作流程:数据变换(标准化和归一化)
(3)无监督学习工作流程:聚类
(3)维数约简PCA
(四)SKLearn算法库顶层设计
SKLearn算法模块的学习顺序
(四)SKLearn数据集操作API
1,SKLearn的数据集API
2,自带的小数据集(Packaged Dataset)sklearn.datasets.load_
(1)鸢尾花数据集:load_iris():三个不同品种的鸢尾花,主要依据花萼(sepal)的长和宽以及花瓣(petal)的长和宽这四个特征进行分类实验。
(2)手写数字数据集:load_digits()
(3)自带的小数据集(Packaged Dataset)