Sklearn工具(第二天)

Sklearn工具(第二天)

一、Python科学计算环境Final

1、为什么选择python?

        Pthon是跨平台语言,科学计算编程语言的要求:易学,易用,可读,很多工具库。

2、Python科学计算环境

 python的科学计算环境:numpy, scipy, matplotlib, Scikit-Learn, Scikit-Image, Pandas
(1)Numpy:基于Python的数值计算包,用于存储操作多维数组

在这里插入图片描述

(2)scipy:基于Numpy设计的用于科学计算和工程设计的开发包

在这里插入图片描述

(3)matplotlib:绘制二维图像

在这里插入图片描述

(4)Scikit Learn整体结构介绍

在这里插入图片描述

(5)Pandas:数据分析(提供高效地数据结构和数据分析工具)

3、开发环境搭建

(1)安装Anaconda
(2)安装PyCharm
(3)配置环境

二、SKLearn算法库的顶层设计

(一)SKLearn包含了哪些模块

(1)监督学习的各个模块

在这里插入图片描述

(2)SKLearn无监督学习模块

在这里插入图片描述

(3)SKLearn数据变换模块

在这里插入图片描述

(二)SKLearn中算法的继承关系

SKLearn算法类顶层设计图

在这里插入图片描述

(三)SKLearn六大板块统一API(调用接口)

(1)分类,回归, 聚类, 维数约简, 特征抽取选择,数据预处理

在这里插入图片描述
SKLearn监督学习工作流程 在这里插入图片描述
SKLearn无监督学习工作流程
在这里插入图片描述

(2) 数据预处理工作流程:数据变换(标准化和归一化)

在这里插入图片描述

(3)无监督学习工作流程:聚类

在这里插入图片描述

(3)维数约简PCA

在这里插入图片描述

(四)SKLearn算法库顶层设计

SKLearn算法模块的学习顺序
在这里插入图片描述

(四)SKLearn数据集操作API

1,SKLearn的数据集API

在这里插入图片描述

2,自带的小数据集(Packaged Dataset)sklearn.datasets.load_

在这里插入图片描述
在这里插入图片描述

(1)鸢尾花数据集:load_iris():三个不同品种的鸢尾花,主要依据花萼(sepal)的长和宽以及花瓣(petal)的长和宽这四个特征进行分类实验。

在这里插入图片描述

(2)手写数字数据集:load_digits()

在这里插入图片描述

(3)自带的小数据集(Packaged Dataset)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值