14天阅读挑战赛
*努力是为了不平庸~
算法知识点
优先队列
算法题目来源
算法题目描述
如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值。如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值。
例如,
[2,3,4] 的中位数是 3
[2,3] 的中位数是 (2 + 3) / 2 = 2.5
设计一个支持以下两种操作的数据结构:
void addNum(int num) - 从数据流中添加一个整数到数据结构中。
double findMedian() - 返回目前所有元素的中位数。
示例:
1、输入:
[“MedianFinder”,“addNum”,“addNum”,“findMedian”,“addNum”,“findMedian”]
[[],[1],[2],[],[3],[]]
输出:[null,null,null,1.50000,null,2.00000]
2、输入:
[“MedianFinder”,“addNum”,“findMedian”,“addNum”,“findMedian”]
[[],[2],[],[3],[]]
输出:[null,null,2.00000,null,2.50000]
做题思路
使用两个有点队列,一个优先队列queueMin存储小于等于中位数,一个优先队列存储大于中位数。
当我们尝试添加一个数num 到数据结构中,我们需要分情况讨论:
num≤queueMin.peek()
此时num 小于等于中位数,我们需要将该数添加到queueMin 中。新的中位数将小于等于原来的中位数,因此我们可能需要将 queueMin 中最大的数移动到 queueMax 中。
num>queueMin.peek()
此时 num 大于中位数,我们需要将该数添加到 queueMax 中。新的中位数将大于等于原来的中位数,因此我们可能需要将 queueMax 中最小的数移动到 queueMin 中。
特别地,当累计添加的数的数量为 0 时,我们将 num 添加到 queueMin 中。
注意优先队列的初始化可以使用Lambda表达式,默认是小根堆,因此(a, b) -> (a - b)是小跟堆,peek的是最小值,(a, b) -> (b - a)是大根堆,peek的是最大值。
模板代码
class MedianFinder {
PriorityQueue<Integer> queMin;
PriorityQueue<Integer> queMax;
public MedianFinder() {
queMin = new PriorityQueue<Integer>((a, b) -> (b - a));
queMax = new PriorityQueue<Integer>((a, b) -> (a - b));
}
public void addNum(int num) {
if (queMin.isEmpty() || num <= queMin.peek()) {
queMin.offer(num);
if (queMax.size() + 1 < queMin.size()) {
queMax.offer(queMin.poll());
}
} else {
queMax.offer(num);
if (queMax.size() > queMin.size()) {
queMin.offer(queMax.poll());
}
}
}
public double findMedian() {
if (queMin.size() > queMax.size()) {
return queMin.peek();
}
return (queMin.peek() + queMax.peek()) / 2.0;
}
}
复杂度分析
时间复杂度:O(logn),其中 n 为累计添加的数的数量。
空间复杂度:O(n),主要为优先队列的开销。