使用阿里云OSS完成文件的上传
基础条件:
- 提前注册过阿里云账户
- 账户里有余额(文件上传按流量收费)
- 开通过OSS的基础服务
如果有以上基础条件不满足的小伙伴,去度娘了解一下。
前言
有过基础的小伙伴应该了解过,正常的一个WEB项目部署,通常是采用动静分离的原则的架构,
动态资源:个人中心,搜索列表…
静态资源:css,js,图片,视频…
通过动静分离的操作,让请求的分流,减轻服务器的压力,文件单独存放,方便管理,方便维护,效率优化,文件服务器种类很多,FastDFS,七牛云,OSS,今天操作的就是阿里云的OSS,下面是具体的步骤。
-
创建一个SpringBoot工程测试
-
导入OOS-SDK依赖
<dependency> <groupId>com.aliyun.oss</groupId> <artifactId>aliyun-sdk-oss</artifactId> <version>3.8.0</version> </dependency>
-
在application.properties中配置OSS相关的信息
#配置阿里云OOS #自己的服务器节点,OSS控制台可看 aliyun.oss.file.endpoint=oss-cn-beijing.aliyuncs.com #自己的RAM子账号key aliyun.oss.file.keyid=LTAI4G*****Nk8A1djZc1vYjV #自己的RAM子账号secret aliyun.oss.file.keysecret=hNV3qpR*****mnKuCh1R9twVtOrVc #自己的文件存储的bucket对象 aliyun.oss.file.bucketname=xybest
4.前端控制器
package com.ddbuy.testController; import com.aliyun.oss.OSS; import com.aliyun.oss.OSSClientBuilder; import com.ddbuy.entity.TbContent; import com.ddbuy.utils.IdWorker; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.beans.factory.annotation.Value; import org.springframework.stereotype.Controller; import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RequestParam; import org.springframework.web.multipart.MultipartFile; import java.io.InputStream; /** * @Auther: Mr.zhou * @Date: 2020/8/20 14:03 */ @Controller @ResponseBody @RequestMapping("/content/") public class ConentController { // 使用注入工具类对象 @Autowired(required = false) private IdWorker idWorker; // 使用@Value读取application文件里的配置 @Value("${aliyun.oss.file.endpoint}") private String endpoint; @Value("${aliyun.oss.file.keyid}") private String keyid; @Value("${aliyun.oss.file.keysecret}") private String keysecret; @Value("${aliyun.oss.file.bucketname}") private String bucketname; @RequestMapping("addContent") public String addContent(@RequestParam(value = "contentpic") MultipartFile file) { // 获取上传文件名 String filename = file.getOriginalFilename(); System.out.println("所要上传的文件名:" + filename); // 创建唯一文件名覆盖原来要上传的文件名,使用工具类对象产生随机数 filename = idWorker.nextId() + filename.substring(filename.lastIndexOf(".")); // 手动拼出阿里云上的文件路径 String path = "http://" + bucketname + "." + endpoint + "/" + filename; System.out.println(path); try { InputStream inputStream = file.getInputStream(); // 上传文件到OSS服务器,创建OSSClient实例 OSS client = new OSSClientBuilder().build(endpoint, keyid, keysecret); // 上传文件流 client.putObject(bucketname, filename, inputStream); // 关闭资源 client.shutdown(); } catch (Exception e) { e.printStackTrace(); System.out.println("上传失败"); return "上传失败"; } System.out.println("上传成功"); return "上传成功"; } }
- 工具类(雪花算法产生随机数字)生成唯一文件名
package com.ddbuy.utils;
import org.springframework.stereotype.Component;
import java.lang.management.ManagementFactory;
import java.net.InetAddress;
import java.net.NetworkInterface;
/**
* @Auther: Mr.zhou
* @Date: 2020/8/24 20:35
* /**
* <p>名称:IdWorker.java</p>
* <p>描述:分布式自增长ID</p>
* <pre>
* Twitter的 Snowflake(雪花算法) JAVA实现方案
* </pre>
* 核心代码为其IdWorker这个类实现,其原理结构如下,我分别用一个0表示一位,用—分割开部分的作用:
* 1||0---0000000000 0000000000 0000000000 0000000000 0 --- 00000 ---00000 ---000000000000
* 在上面的字符串中,第一位为未使用(实际上也可作为long的符号位),接下来的41位为毫秒级时间,
* 然后5位datacenter标识位,5位机器ID(并不算标识符,实际是为线程标识),
* 然后12位该毫秒内的当前毫秒内的计数,加起来刚好64位,为一个Long型。
* 这样的好处是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由datacenter和机器ID作区分),
* 并且效率较高,经测试,snowflake每秒能够产生26万ID左右,完全满足需要。
* <p>
* 64位ID (42(毫秒)+5(机器ID)+5(业务编码)+12(重复累加))
*/
@Component
public class IdWorker {
// 时间起始标记点,作为基准,一般取系统的最近时间(一旦确定不能变动)
private final static long twepoch = 1288834974657L;
// 机器标识位数
private final static long workerIdBits = 5L;
// 数据中心标识位数
private final static long datacenterIdBits = 5L;
// 机器ID最大值
private final static long maxWorkerId = -1L ^ (-1L << workerIdBits);
// 数据中心ID最大值
private final static long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
// 毫秒内自增位
private final static long sequenceBits = 12L;
// 机器ID偏左移12位
private final static long workerIdShift = sequenceBits;
// 数据中心ID左移17位
private final static long datacenterIdShift = sequenceBits + workerIdBits;
// 时间毫秒左移22位
private final static long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
private final static long sequenceMask = -1L ^ (-1L << sequenceBits);
/* 上次生产id时间戳 */
private static long lastTimestamp = -1L;
// 0,并发控制
private long sequence = 0L;
private final long workerId;
// 数据标识id部分
private final long datacenterId;
public IdWorker(){
this.datacenterId = getDatacenterId(maxDatacenterId);
this.workerId = getMaxWorkerId(datacenterId, maxWorkerId);
}
/**
* @param workerId
* 工作机器ID
* @param datacenterId
* 序列号
*/
public IdWorker(long workerId, long datacenterId) {
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
}
this.workerId = workerId;
this.datacenterId = datacenterId;
}
/**
* 获取下一个ID
*
* @return
*/
public synchronized long nextId() {
long timestamp = timeGen();
if (timestamp < lastTimestamp) {
throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
}
if (lastTimestamp == timestamp) {
// 当前毫秒内,则+1
sequence = (sequence + 1) & sequenceMask;
if (sequence == 0) {
// 当前毫秒内计数满了,则等待下一秒
timestamp = tilNextMillis(lastTimestamp);
}
} else {
sequence = 0L;
}
lastTimestamp = timestamp;
// ID偏移组合生成最终的ID,并返回ID
long nextId = ((timestamp - twepoch) << timestampLeftShift)
| (datacenterId << datacenterIdShift)
| (workerId << workerIdShift) | sequence;
return nextId;
}
private long tilNextMillis(final long lastTimestamp) {
long timestamp = this.timeGen();
while (timestamp <= lastTimestamp) {
timestamp = this.timeGen();
}
return timestamp;
}
private long timeGen() {
return System.currentTimeMillis();
}
/**
* <p>
* 获取 maxWorkerId
* </p>
*/
protected static long getMaxWorkerId(long datacenterId, long maxWorkerId) {
StringBuffer mpid = new StringBuffer();
mpid.append(datacenterId);
String name = ManagementFactory.getRuntimeMXBean().getName();
if (!name.isEmpty()) {
/*
* GET jvmPid
*/
mpid.append(name.split("@")[0]);
}
/*
* MAC + PID 的 hashcode 获取16个低位
*/
return (mpid.toString().hashCode() & 0xffff) % (maxWorkerId + 1);
}
/**
* <p>
* 数据标识id部分
* </p>
*/
protected static long getDatacenterId(long maxDatacenterId) {
long id = 0L;
try {
InetAddress ip = InetAddress.getLocalHost();
NetworkInterface network = NetworkInterface.getByInetAddress(ip);
if (network == null) {
id = 1L;
} else {
byte[] mac = network.getHardwareAddress();
id = ((0x000000FF & (long) mac[mac.length - 1])
| (0x0000FF00 & (((long) mac[mac.length - 2]) << 8))) >> 6;
id = id % (maxDatacenterId + 1);
}
} catch (Exception e) {
System.out.println(" getDatacenterId: " + e.getMessage());
}
return id;
}
}
6.编写前端测试页面代码
这里就忽略了,注意表单的提交方式是以Post方式 加上enctype="multipart/form-data"属性即可
补充:如果后期方便在OSS文件里方便管理图片文件内容,可以引入工具的依赖
<!--日期时间工具-->
<dependency>
<groupId>joda-time</groupId>
<artifactId>joda-time</artifactId>
<version>2.10.1</version>
</dependency>
在控制器里使用工具方法 String dirpath=new DateTime().tostring(“yyyy/MM/dd”) 将当前的时间转换为yyyy/MM/dd的格式,比如2020/02/03 ,这样上传的文件名字时候可以这个dirpath作为我们的图片所在的文件夹名称,以分布式id生成器生成的id为名称存储.
filename = dicpath+"/"+idWorker.nextId()+filename.substring(filename.lastIndexOf("."));
ossClient.putObject(bucketName, filename, inputStream);