代码随想录-刷题第四十六天

本文介绍了如何使用动态规划方法解决爬楼梯问题(涉及斐波那契和完全背包)、零钱兑换最少硬币数问题以及找到和为特定值的完全平方数最少数量问题。通过递推公式和初始化策略,展示了如何构建dp数组并求解这些数学问题。
摘要由CSDN通过智能技术生成

70. 爬楼梯(进阶)

题目链接:70. 爬楼梯

改为:一步一个台阶,两个台阶,三个台阶,…,直到 m 个台阶。问有多少种不同的方法可以爬到楼顶呢?

思路:本题是一个斐波那契的问题,但是也符合完全背包问题,这里用完全背包来解。

动态规划五步曲:

  1. dp[i]:爬到有i个台阶的楼顶,有dp[i]种方法。

  2. 递推公式:dp[i] += dp[i - j]

  3. 初始化:dp[0] = 1

    下标非0的dp[i]初始化为0,因为dp[i]是靠dp[i-j]累计上来的,dp[i]本身为0不会影响结果

  4. 遍历顺序:求解排列数问题,先遍历背包容量,再遍历物品

  5. 举例来推导dp数组

    本题与动态规划:377. 组合总和 Ⅳ几乎是一样的,这里就不再重复举例了。

class Solution {
    public int climbStairs(int n) {
        // dp[i]:爬到有i个台阶的楼顶,有dp[i]种方法。
        int[] dp = new int[n + 1];
        // 递推公式:dp[i] += dp[i - j]
        // 初始化
        dp[0] = 1;
        int m = 2;
        
        for (int i = 1; i <= n; i++) { // 遍历背包
            for (int j = 1; j <= m; j++) { //遍历物品
                if (i >= j) dp[i] += dp[i - j];
            }
        }
        return dp[n];
    }
}

322. 零钱兑换

题目链接:322. 零钱兑换

思路:动态规划五步曲:

  1. dp[j]:凑足总额为j所需硬币的最少个数为dp[j]

  2. 递推公式:dp[j] = min(dp[j], dp[j - coins[i]] + 1)

    凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]

    即dp[j - coins[i]] + 1就是dp[j](考虑coins[i]),要选择最小的dp[j]。

  3. 初始化:dp[0] = 0,代表凑成0需要的硬币个数为0,其他初始化成最大值。

    dp[j]必须初始化为一个最大的数,否则就会在min(dp[j - coins[i]] + 1, dp[j])比较的过程中被初始值覆盖。

  4. 遍历顺序:本题两种遍历方式都可以,选择先遍历物品再遍历背包容量。

    本题是要求最少硬币数量,硬币是组合数还是排列数都无所谓!所以两个for循环先后顺序怎样都可以!

  5. 举例推导dp数组

    以输入:coins = [1, 2, 5], amount = 5为例

    322.零钱兑换

    dp[amount]为最终结果。

class Solution {
    public int coinChange(int[] coins, int amount) {
        // dp[j]:凑足总额为j所需硬币的最少个数为dp[j]
        int[] dp = new int[amount + 1];
        // 递推公式:dp[j] = min(dp[j], dp[j - coins[i]] + 1)
        // 初始化
        dp[0] = 0;
        int max = Integer.MAX_VALUE;
        for (int i = 1; i <= amount; i++) {
            dp[i] = max;
        }
        // 遍历顺序
        for (int i = 0; i < coins.length; i++) {
            for (int j = coins[i]; j <= amount; j++) {
                //只有dp[j - coins[i]]不是初始最大值时,该位才有选择的必要
                if (dp[j - coins[i]] != max) {
                    dp[j] = Math.min(dp[j], dp[j - coins[i]] + 1);
                }
            }
        }
        return dp[amount] == max ? -1 : dp[amount];
    }
}

279. 完全平方数

题目链接:279. 完全平方数

把题目翻译一下:完全平方数就是物品(可以无限件使用),凑个正整数n就是背包,问凑满这个背包最少有多少物品?

思路:本题与上一题思路基本相同,直接动态规划五步曲

  1. dp[j]:和为j的完全平方数的最少数量为dp[j]

  2. 递推公式:dp[j] = min(dp[j], dp[j - i * i] + 1)

    dp[j] 可以由dp[j - i * i]推出, dp[j - i * i] + 1 便可以凑成dp[j],要选择最小的dp[j]。

  3. 初始化:dp[0] = 0,其他初始化成最大值。

  4. 遍历顺序:同样是两种遍历顺序都可以,这里选择先遍历物品再遍历背包容量

  5. 举例推导dp数组

    已输入n为5例,dp状态图如下:

    279.完全平方数

    dp[n]为最终结果。

class Solution {
    public int numSquares(int n) {
        // dp[j]:和为j的完全平方数的最少数量为dp[j]
        int[] dp = new int[n + 1];
        // 递推公式:dp[j] = min(dp[j - i * i] + 1, dp[j])
        // 初始化
        dp[0] = 0;       
        int max = Integer.MAX_VALUE;
        for (int i = 1; i <= n; i++) {
            dp[i] = max;
        }
        // 遍历顺序
        for (int i = 1; i * i <= n; i++) {
            for (int j = i * i; j <= n; j++) {
                dp[j] = Math.min(dp[j], dp[j - i * i] + 1);
            }
        }
        return dp[n];
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值