多重背包问题 I

 

 

有 N种物品和一个容量是 V 的背包。

第 i 种物品最多有 si 件,每件体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤1000<N,V≤100
0<vi,wi,si≤1000<vi,wi,si≤100

输入样例

4 5
1 2 3
2 4 1
3 4 3
4 5 2

输出样例:

10

多重背包可以将每个物品的个数摊开,例如物品A有3件,把它看成三样 独立的东西,但是这样会产生很多重复计算,例如取第一件、第二件等价于取第二件、第三件等等等

所以还可以进一步优化 来减少重复计算。每个物品的个数可以化为二进制数,也就是说物品的个数 可以用多个2的次方组成

例如 

14 =8 + 4 +2 

11 = 8 +2 +1

那是不是说当物品个数为 n时,在可挑选物品中,添加多个可以组合成n以内的2的次方

例如该物品个数为14 =8 + 4 +2 

所以在可挑选物品内添加 1个该物品、2个该物品、4个该物品、8个该物品。

这样就可以组合到14个物品内取任意个时的情况

但是,这样不仅可以组合到14个物品内的任意个,还可以组合到15个物品的情况,

所以我们进行分组时,要达到只能组合到不大于n的正数

所以以上例子可化为

14 =1+2+4+7

11 =1 + 2 + 4 +4

n = 2^{1} +2^{2}.......+2^{m}+剩余的数

 

#include<iostream>
#include<algorithm>
using namespace std;
int main(){
	int n,m,V,W,s,a[100000]={0},v[100000]={0},w[100000],cut=0;// cut记录为当前物品序列(第几个) 
	cin>>n>>m;
	for(int i=1;i<=n;i++){
		cin>>V>>W>>s;
		int p=1;     //p为记录取几个当前物体作为一个独立的物体 
		while(s>p){
			s-=p;
			v[++cut]=p*V;
			w[cut]=p*W;
			p<<=1;
		}
		v[++cut]=s*V;
		w[cut]=s*W;   
	}
	for(int i=1;i<=cut;i++){  //01背包 
		for(int j=m;j;j--){
			if(v[i]<=j)a[j]=max(a[j],a[j-v[i]]+w[i]);
			else break;
		}
	}
	cout<<a[m]<<endl;
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值