股票买卖问题-无限次交易

该博客介绍了一个使用动态规划算法解决股票交易问题的策略,允许进行多次交易但不允许同时持有多个股票。算法通过维护两个状态,分别表示不持有股票和持有股票时的最大利润,从而在遍历股票价格过程中找到最大收益。最终返回的是在所有交易后不持有股票时的最大利润。
摘要由CSDN通过智能技术生成

问题
给定一个数组 prices ,其中 prices[i] 是一支给定股票第 i 天的价格。

设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。

注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。


问题分析
问题类似于:只限制一次交易。
状态有:持有股票,不持有股票
区别在于持有股票的状态更新时需要考虑上一次不持有股票的状态。而只限制1次交易在更新持有股票的状态时,只需考虑当前股价和上次持有股价哪个价格更低,选择更低的买入。

dp[days][2]
dp[i][0]表示第i天不持有股票时,最大利润
dp[i][1]表示第i天持有股票时,最大利润


代码

def stock3(prices):
        #不同时持有多张股票   即下次买入之前,必须将之前持有的出售
        #多次操作获得最大利润  
        if len(prices)<2:
            return 0
        
        dp = [[0]*2 for _ in range(len(prices))] # 构造len(prices)*2矩阵,
        #dp[i][0] 表示不持有股票时,第i天时手中最大可能拥有的利润
        #dp[i][1] 表示持有股票时,第i天时最大可能拥有的利润
        dp[0][1]=-prices[0] #第一天持有的股票  则利润为负

        for i in range(1,len(prices)):
            dp[i][0] = max(dp[i-1][0],dp[i-1][1]+prices[i]) #判断是卖出股票钱更多,还是保留
            dp[i][1] = max(dp[i-1][1],dp[i-1][0]-prices[i]) #判断是买入股票
        
        return dp[len(dp)-1][0] #股票卖出去后的最大利润

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值