numpy学习
陈晓小啊
这个作者很懒,什么都没留下…
展开
-
python学习numpy基础和应用-4
我们就开始学习用索引来表示数组的每一个元素。首先,是数组的轴。我们之前就提到过,但是书上说,这里与以往不同,在此强调是因为对它正确理解的事关重大。我们可以知道,arange创建等差数列,而后面的reshape规定了形状。我们明显的看出a是3轴形状(0轴:2,1轴:3,2轴:4)创作者可鸡儿聪明了,为了能够让我们好找到元素,为每一个元素建立了索引。貌似就是数组...原创 2019-01-17 10:15:21 · 122 阅读 · 0 评论 -
python学习numpy基础和应用-7
numpy的优势在于科学的计算和数值处理。例如,我们有一个列表[1,20,28,37,18,56],要求我们将每个元素乘以3,我们该怎么操作?在python中,我们可以这样解决:在这里,我们就可以直接整个数组乘3.这里体现了numpy的优势所在。在a*3中,我们称3为标量,称数组a为矢量或者向量。我们这里对数组进行加减乘除的时候,都是对整个数组的元素进行操作。当...原创 2019-01-24 11:04:31 · 224 阅读 · 0 评论 -
python学习numpy基础和应用-2
创建数组通过-1我们初步了解了数组,有个大概的了解,数组的出身,就源于其创建方法。(1)创建数组的基本方法np.array()是创建数组的基本方法,我们之前只是简单的应用,没有窥其全貌,偷瞄它的文档。由此可见,我们对a,b两个变量都进行赋值,但是方法不同。通过例子,我们可以知道,b在赋值的时候说明了为float类型。在python的列表中,我们了解到嵌套列表,即列表...原创 2019-01-14 11:17:52 · 148 阅读 · 0 评论 -
python学习numpy基础和应用-1
numpy的核心-“ndarray” 即多维数组,数组是python的一个重要数据结构,在pyhton中,坚持万物为对象 原则,数组也是个对象,然而这个对象本身有些特别之处,具体表现在其属性以及方法上。首先需要创建一个数组对象:data = np.array([1,2,3,4,5])(在此之前需要首先导入numpy)如果想输出data 直接打一个data 则直接显示data其中的 数据...原创 2019-01-11 11:33:03 · 228 阅读 · 0 评论 -
python学习numpy基础和应用-3
创建自定义类型的数组面对好多复杂的实际情况,仅有的几种数组类型可能没办法满足我们的需要,因此允许我们自定义类型。创建自定义类型,使用的方法是np.dtype()。注意区分,这里展示的不是数组对象的属性data.dtype data是数组对象,其属性返回值是元素类型,而np.dtype是一个方法。my_type就是自定义的dtype对象,其参数就是一个字典,字典有两个键“name...原创 2019-01-14 17:51:25 · 104 阅读 · 0 评论 -
python学习numpy基础和应用-5
数组的切片根据下标,可以得到数组中的某个后者某几个元素,这是从数组中得到部分元素的一种方法。此外,还有另外一种被称为切片的方式,从这个名称大概猜测,切片能设定范围,根据这个范围从原数组中获得部分元素。·定义一个从10到20的等差数组。这波操作跟以往熟知的python列表差不多,同样遵循着包前不包后的原则。但是,需要了解的是,会发生的一些新的情况。我们改变b中的元素,...原创 2019-01-20 21:05:00 · 158 阅读 · 0 评论 -
python学习numpy基础和应用-6
在上一篇的学习中,了解到,使用那些方法已经能够实现数组的变形了,numpy觉得我们不够,还允许我们使用下标操作完成变形。我们定义了数组data,我们发现c从一维变成了二维,从以前的切片知识可知,操作本质是对data进行切片,逗号前面部分,表示data0轴上的所有元素,也就是data的全部元素,而逗号后面的元素表示1轴上的元素,在设置元素取值范围的时候,使用了np.newaxis...原创 2019-01-23 11:25:10 · 157 阅读 · 0 评论 -
python学习numpy基础和应用-8
简单统计应用我们可以知道numpy中提供了很多的函数。1.生成正太分布数据有很多的现象符合正态分布规律。在numpy中就有名为random的模块,里面包含若干随机数据的函数,其中normal就是专门用来生成符合正态分布规律的随机数字。完整的函数表达式为:numpy.random.normal(loc=0.0,scale=1.0,size=None).loc:浮点数,分布的平...原创 2019-02-15 17:07:31 · 153 阅读 · 0 评论