十六周学习前端的Vue.js框架的笔记记录,以及遇到的问题记录

本文详细介绍Vue.js的基础学习路径,包括数据绑定、事件处理、组件化等核心概念,并深入探讨实战技巧,如条件渲染、列表渲染、计算属性及样式绑定,同时讲解组件间的数据传递与非父子组件通信策略。
  • 课程简介
  • Vue起步

一、基础学习:Vue.js的文档学习和视频学习相结合

1、v-for:数据绑定,循环 item in list

2、v-on 事件绑定,@

ToDoList的功能

3、v-model数据的双向绑定,表单

4、前端组件化

 

二、实战

 

  • Vue实例

1、创建一个Vue实例

2、Vue实例生命周期钩子函数

3、Vue的模板语法

4、计算属性,方法与倾听器☆

5、vue中的样式绑定

①class的对象绑定,1.:class="{ activated:isActivated }"

                  2.:class="[activated,activatedOne]"

 

②style 

1.:style="styleObj"

2. :style="[styleObj,{fontSize:'26px'}]"

6、Vue中的条件渲染

①v-ifv-show的用法

<v-if=”show”>{{ message }}</div>    //未被添加,每次都要删除和添加dom

<v-show=”show”>{{ message }}</div>  // display:none

data:{

show:false

}

<div  v-if=”show===a”></div>

<div  v-if-else=”show===b”></div>

<div  v-else></div>

7Vue中的列表渲染

数组和对象

8Vue中的set方法

Vue.set(vm.userInfo,"adress","Beijing")//在列表中增加address这一行,值为Beijing

①Vue.set(vm.userInfo,1,5)

vm.$set(vm.userInfo,2,9)

9、使用组件的细节点:

①使用is属性解决模板标签上出现bug的问题,如tbody中要有tr;

ul中要有li;select中要有option

ref引用的方式获取dom

<div ref='hello'

             @click="handleClick">

            Hello World

        </div>

 

 

  var vm = new Vue({

            el:'#app',

            data:{

 

            },

            methods:{

                handleClick:function() {

                    console.log(this.$refs.hello.innerHTML)

                }

            }

        })

       

10、父组件向子组件传递数据

11、子组件向父组件传递数据

12、组件参数校验与非props特性

13、给组件绑定原生事件

14、非父子组件传值Bus/总线/发布订阅模式/观察者模式

15、在Vue中使用插槽slot

给插槽命名 <div slot=”header”></div>

<slot name=”header></slot>

16、作用域插槽

 

【源码免费下载链接】:https://renmaiwang.cn/s/os2te 大整数乘法是计算机科学中的一个重要领域,特别是在算法设计和数学计算中有着广泛应用。它涉及到处理超过标准整型变量范围的数值运算。在C++编程语言中,处理大整数通常需要自定义数据结构和算法,因为内置的`int`、`long long`等类型无法满足大整数的存储和计算需求。以下是对这个主题的详细阐述:1. **大整数数据结构**: 在C++中,实现大整数通常采用数组或链表来存储每一位数字。例如,可以使用一个动态分配的数组,每个元素表示一个位上的数字,从低位到高位排列。这种数据结构允许我们方便地进行加减乘除等操作。2. **乘法算法**: - **暴力乘法**:最直观的方法是类似于小学的竖式乘法,但效率较低,时间复杂度为O(n^2)。 - **Karatsuba算法**:由Alexander Karatsuba提出,将两个n位数的乘法转化为三个较小的乘法,时间复杂度为O(n^1.585)。 - **Toom-Cook算法**:比Karatsuba更通用,通过多项式插值和分解进行计算,有不同的变体,如Toom-3、Toom-4等。 - **快速傅里叶变换(FFT)**:当处理的大整数可以看作是多项式系数时,可以利用FFT进行高效的乘法,时间复杂度为O(n log n)。FFT在数论和密码学中尤其重要。3. **算法实现**: 实现这些算法时,需要考虑如何处理进位、溢出等问题,以及如何优化代码以提高效率。例如,使用位操作可以加速某些步骤,同时要确保代码的正确性和可读性。4. **源代码分析**: "大整数乘法全解"的源代码应包含了上述算法的实现,可能还包括了测试用例和性能比较。通过阅读源码,我们可以学习如何将理论算法转化为实际的程序,并理解各种优化技巧。5. **加说明**: 通常,源代码附带的说明会解释
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值