卡拉兹(Callatz)猜想:
对任何一个自然数n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把(3n+1)砍掉一半。这样一直反复砍下去,最后一定在某一步得到n=1。卡拉兹在1950年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证(3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科研的进展……
我们今天的题目不是证明卡拉兹猜想,而是对给定的任一不超过1000的正整数n,简单地数一下,需要多少步(砍几下)才能得到n=1?
输入格式:每个测试输入包含1个测试用例,即给出自然数n的值。
输出格式:输出从n计算到1需要的步数。
输入样例:3输出样例:
5
经过几个小时的思考得出以下错误代码:
#include "stdio.h"
int main()
{
int a, n;
n = 0;
scanf_s("%d", &a);
do
{
if (a % 2 == 0)
{
a = a / 2;
n = n + 1;
}
else
if (a % 2 == 1)
{
a = (a * 3 + 1)/2;
n = n + 1;
}
}
while (a == 1);
printf("%d", n);
return 0;
}
至今仍未发现错误。。。
经过十分钟的思考,是do while语句用错,while语句的括号里的条件是当它不成立的时候才退出do while语句。
但是仍然不知道怎么把输入的值设置在1000以内且为正整数。
经过百度后,添加了while语句去控制输入的整数,但是最后运行超时,,哎。
最后还是经过百度学到一个更简便的:
while (a!= 1)
{
a = a % 2 ? (3 * a + 1) / 2 : a / 2;
n++;
}
感觉这个式子以后会经常用到。。。提交了14次,最后终于得了满分