No.1-素数

这篇博客介绍了两种不同的素数生成方法:常规方法和素数筛法。常规方法通过判断每个数是否能被小于其平方根的数整除来确定是否为素数;素数筛法则利用埃拉托斯特尼筛法,从2开始标记倍数,减少重复计算。此外,还提供了一个寻找指定范围内素数的例题,用于输出第M到N个素数。
摘要由CSDN通过智能技术生成

一、常规方法

#include <iostream>
#include<cmath>
#include<cstdio>
using namespace std;

bool isPrime(int n)
{
    if(n<=1) return false;
    int sqr=(int)sqrt(1.0*n);
    for(int i=2;i<=sqr;i++)
    {
        if(n%i==0) return false;
    }
    return true;
}
int prime[101],pNum=0;
bool p[101]={0};
void Find_Prime()
{
    for(int i=1;i<101;i++)
    {
        if(isPrime(i)==true)
        {
            prime[pNum++]=i;
            p[i]=true;
        }
    }
}
int main()
{
    Find_Prime();
    for(int i=0;i<pNum;i++)
    {
        printf("%d ",prime[i]);
    }
    return 0;
}

二、素数筛法

#include <cstdio>

const int maxn=101;
int prime[maxn],pNum=0;
bool p[maxn]={0};//如果i为素数,则p[i]为false;否则为true
void Find_Prime()
{
    for(int i=2;i<maxn;i++)
    {
        if(p[i]==false)
        {
            prime[pNum++]=i;
            for(int j=i+i;j<maxn;j+=i)
            {
                p[j]=true;
            }
        }
    }
}

int main()
{
    Find_Prime();
    for(int i=0;i<pNum;i++)
    {
        printf("%d ",prime[i]);
    }
    return 0;
}

三、例题:数素数

题意

输出第M-N个素数

输入样例

5 27

输出样例

11 13 17 19 23 29 31 37 41 43
47 53 59 61 67 71 73 79 83 89
97 101 103
#include <cstdio>

const int maxn=1000001;
int prime[maxn],num=0;
bool p[maxn]={0};
void Find_Prime(int n)
{
    for(int i=2;i<maxn;i++)
    {
        if(p[i]==false)
        {
            prime[num++]=i;
            if(num>=n) break; //只需要n个素数,因此超过时即可结束
            for(int j=i+i;j<maxn;j+=i)
                p[j]=true;
        }
    }
}

int main()
{
    int m,n,count=0;
    scanf("%d%d",&m,&n);
    Find_Prime(n);
    for(int i=m;i<=n;i++)
    {
        printf("%d",prime[i-1]);
        count++;
        if(count%10!=0&&i<n) printf(" ");
        else printf("\n");
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值