一、常规方法
#include <iostream>
#include<cmath>
#include<cstdio>
using namespace std;
bool isPrime(int n)
{
if(n<=1) return false;
int sqr=(int)sqrt(1.0*n);
for(int i=2;i<=sqr;i++)
{
if(n%i==0) return false;
}
return true;
}
int prime[101],pNum=0;
bool p[101]={0};
void Find_Prime()
{
for(int i=1;i<101;i++)
{
if(isPrime(i)==true)
{
prime[pNum++]=i;
p[i]=true;
}
}
}
int main()
{
Find_Prime();
for(int i=0;i<pNum;i++)
{
printf("%d ",prime[i]);
}
return 0;
}
二、素数筛法
#include <cstdio>
const int maxn=101;
int prime[maxn],pNum=0;
bool p[maxn]={0};//如果i为素数,则p[i]为false;否则为true
void Find_Prime()
{
for(int i=2;i<maxn;i++)
{
if(p[i]==false)
{
prime[pNum++]=i;
for(int j=i+i;j<maxn;j+=i)
{
p[j]=true;
}
}
}
}
int main()
{
Find_Prime();
for(int i=0;i<pNum;i++)
{
printf("%d ",prime[i]);
}
return 0;
}
三、例题:数素数
题意
输出第M-N个素数
输入样例
5 27
输出样例
11 13 17 19 23 29 31 37 41 43
47 53 59 61 67 71 73 79 83 89
97 101 103
#include <cstdio>
const int maxn=1000001;
int prime[maxn],num=0;
bool p[maxn]={0};
void Find_Prime(int n)
{
for(int i=2;i<maxn;i++)
{
if(p[i]==false)
{
prime[num++]=i;
if(num>=n) break; //只需要n个素数,因此超过时即可结束
for(int j=i+i;j<maxn;j+=i)
p[j]=true;
}
}
}
int main()
{
int m,n,count=0;
scanf("%d%d",&m,&n);
Find_Prime(n);
for(int i=m;i<=n;i++)
{
printf("%d",prime[i-1]);
count++;
if(count%10!=0&&i<n) printf(" ");
else printf("\n");
}
return 0;
}