天池龙珠训练营机器学习基础知识学习笔记Task(1) -----逻辑回归

本学习笔记为阿里云天池龙珠计划机器学习训练营的学习内容,学习链接为:
https://tianchi.aliyun.com/specials/promotion/aicampml

一、学习知识点概要

1. 逻辑回归
 - 是分类模型,一个线性分类器
2. 逻辑回归模型的优劣势:

  • 优点:实现简单,易于理解和实现;计算代价不高,速度很快,存储资源低;
  • 缺点:容易欠拟合,分类精度可能不高
  1. 逻辑回归方程:
    z= W 0 W_{0} W0 + ∑ i M \sum_{i}^{M} iM W i W_{i} Wi X i X_{i} Xi

将回归方程写入其中为:
p = p ( y = 1 ∣ x , θ ) = h θ ( x , θ ) = 1 1 + e − ( w 0 + ∑ i N w i x i ) p = p(y=1|x,\theta) = h_\theta(x,\theta)=\frac{1}{1+e^{-(w_0+\sum_i^N w_ix_i)}} p=p(y=1x,θ)=hθ(x,θ)=1+e(w0+iNwixi)1
所以, p ( y = 1 ∣ x , θ ) = h θ ( x , θ ) p(y=1|x,\theta) = h_\theta(x,\theta) p(y=1x,θ)=hθ(x,θ) p ( y = 0 ∣ x , θ ) = 1 − h θ ( x , θ ) p(y=0|x,\theta) = 1-h_\theta(x,\theta) p(y=0x,θ)=1hθ(x,θ)

逻辑回归从其原理上来说,逻辑回归其实是实现了一个决策边界:对于函数 y = 1 1 + e − z y=\frac{1}{1+e^{-z}} y=1+ez1,当 z = > 0 z=>0 z=>0时, y = > 0.5 y=>0.5 y=>0.5,分类为1,当 z < 0 z<0 z<0时, y < 0.5 y<0.5 y<0.5,分类为0,其对应的 y y y值我们可以视为类别1的概率预测值.

对于模型的训练而言:实质上来说就是利用数据求解出对应的模型的特定的 w w w。从而得到一个针对于当前数据的特征逻辑回归模型。

而对于多分类而言,将多个二分类的逻辑回归组合,即可实现多分类。

二、学习内容

1. sklearn模型参数
      - coef_ 模型对应参数w
      - intercept 模型对应偏置 b
      - n_iter_ 模型迭代次数
      - classes_ 标签列表
 2. seaborn一共有5个大类21种图
      - Relational plots 关系类图表
          1. relplot 关系类图表的接口,其实是下面两种图的集成,通过指定kind参数可以画出下面的两种图
          2. scatterplot 散点图
          3. lineplot 折线图
      - Categorical plots 分类图表 catplot 分类图表的接口,其实是下面八种图表的集成,,通过指定kind参数可以画出下面的八种图
         1. stripplot 分类散点图
         2. swarmplot 能够显示分布密度的分类散点图
         3. boxplot 箱图
         4. violinplot 小提琴图
         5. boxenplot 增强箱图
         6. pointplot 点图
         7. barplot 条形图
         8. countplot 计数图
     - Distribution plot 分布图
         1. jointplot 双变量关系图
         2. pairplot 变量关系组图
         3. distplot 直方图,质量估计图
         4. kdeplot 核函数密度估计图
         5. rugplot 将数组中的数据点绘制为轴上的数据
      - Regression plots 回归图
         1. lmplot 回归模型图
         2. regplot 线性回归图
         3. residplot 线性回归残差图
         4. Matrix plots 矩阵图
         5. heatmap 热力图
         6. clustermap 聚集图
 3. mpl_toolkits.mplot3d 绘制三维图
      - Axes3D 三维散点图

三、学习问题与解答

刚开始看不明白为什么iris数据集实践,三分类模型和二分类模型一样,仔细看发现iris_features_part函数不包括类别为2的样本,只有2类样本数据。而下面iris_features是3类样本数据。

四、学习思考与总结

天池赛事的零基础入门语义分割-地表建筑物识别任务是一个面向初学者的语义分割竞赛。任务的目标是利用机器学习和计算机视觉技术,对卫星像中的地表建筑物进行标记和识别。 在这个任务中,参赛者需要使用给定的训练数据集进行模型的训练和优化。训练数据集包含了一系列卫星像和相应的像素级标注,标注了地表建筑物的位置。参赛者需要通过分析训练数据集中的像和标注信息,来构建一个能够准确地识别出地表建筑物的模型。 参赛者需要注意的是,语义分割是指将像中的每个像素进行分类,使得同一类别的像素具有相同的标签。因此,在地表建筑物识别任务中,参赛者需要将地表建筑物区域与其他区域进行区分,并正确地进行标记。这对于初学者来说可能是一个挑战,因此需要掌握基本的像处理和机器学习知识。 参赛者可以根据自己的理解,选择合适的算法和模型来完成这个任务。常见的方法包括卷积神经网络(CNN),通过设计适当的网络结构和训练方式,提高模型的准确性和泛化能力。同时,数据预处理和数据增强技术也是提高模型性能的关键。参赛者可以通过对数据进行增强和扩充,提高模型的鲁棒性和识别能力。 最后,参赛者需要使用训练好的模型对测试数据集进行预测,并生成预测结果。这些预测结果将用于评估参赛者模型的性能和准确度。评估指标通常包括像素级准确度(Pixel Accuracy)和平均交并比(Mean Intersection over Union),参赛者需要根据这些指标来评估和改进自己的模型。 总之,通过参加这个任务,初学者可以通过实践和挑战来提高自己的像处理和机器学习技能,并掌握语义分割的基本概念和方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值