蓝桥杯 算法训练 Cowboys 递推 动态规划

该博客介绍了蓝桥杯算法竞赛中关于环形牛仔排列问题的解决方法,通过动态规划求解一秒前的可能排列数。文章详细解释了如何处理相邻牛仔相互指的情况,并提供了样例输入和输出,分析了不同情况下的状态转换,以及最终计算排列数的策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述
  一个间不容发的时刻:n个牛仔站立于一个环中,并且每个牛仔都用左轮手枪指着他旁边的人!每个牛仔指着他顺时针或者逆时针方向上的相邻的人。正如很多西部片那样,在这一刻,绳命是入刺的不可惜……对峙的场景每秒都在变化。每秒钟牛仔们都会分析局势,当一对相邻的牛仔发现他们正在互指的时候,就会转过身。一秒内每对这样的牛仔都会转身。所有的转身都同时在一瞬间发生。我们用字母来表示牛仔所指的方向。“A”表示顺时针方向,“B”表示逆时针方向。如此,一个仅含“A”“B”的字符串便用来表示这个由牛仔构成的环。这是由第一个指着顺时针方向的牛仔做出的记录。例如,牛仔环“ABBBABBBA”在一秒后会变成“BABBBABBA”;而牛仔环“BABBA”会变成“ABABB”。 这幅图说明了“BABBA”怎么变成“ABABB” 一秒过去了,现在用字符串s来表示牛仔们的排列。你的任务是求出一秒前有多少种可能的排列。如果某个排列中一个牛仔指向顺时针,而在另一个排列中他指向逆时针,那么这两个排列就是不同的。
输入格式
  输入数据包括一个字符串s,它只含有“A”和“B”。
输出格式
  输出你求出来的一秒前的可能排列数。
数据规模和约定
  s的长度为3到100(包含3和100)
样例输入
BABBBABBA
样例输出
2
样例输入
ABABB
样例输出
2
样例输入
ABABAB
样例输出
4
样例说明
  测试样例一中,可能的初始排列为:"ABBBABBAB"和 “ABBBABBBA”。
  测试样例二中,可能的初始排列为:“AABBB"和"BABBA”。

根据题意,是要求的一秒前的状态的种数,那么一秒前的状态是将AB变为BA那么要变回一秒前的状态只可能是将现在的BA变为AB也可以选择不变,当然如果将BA变为AB任何一种情况都可以,但是不变的话就要考虑一些情况了,例如BAB必须把BA变成AB这一种情况,如果不变的花,那么一秒前是这个BAB这个状态,现在就应该是BBA这个状态了。那么有几种情况直接看代码。

由于这是个环,那么就要考虑首尾在一起的情况,就是说每一个A或者B都要考虑前面的是A还是B而第一个还要考虑最后面的,环环相扣不好处理。这里我首先将第一个和第二个固定,如果附近有BA出现的话将他们移到第一个和第二个的位置上(因为是个环,随便移动不会有影响)然后分别考虑第一二个不变产生的结果数和第一二个变(如果能的话)产生的结果数

下面结合注释看代码。其中dp[i][0]表示当前不变的情况总和,dp[i][1]表示当前变化之后的情况总和,最后的情况应该是这两种情况加起来,但还要根据后继的情况进行选择。

#include <iostream>
#include <vector>
#include <string>
using namespace std;

void rotate_right(string& str)
{//将字符串循环向右移动一格
	char c = str[str.length() - 1];
	int i = str.length();
	while (--i)	str[i] = str[i - 1];
	str[0] = c;
}
void rotate_left(string& str)
{//将字符串循环向左移动一格
	char c = str[0];
	for (int i = 0; i < str.length() - 1; ++i)
		str[i] = str[i + 1];
	str[str.length() - 1] = c;
}

long long getCombination(const string& str)
{
	vector<vector<long long> > dp(str.length(), vector<long long>(2, 0));
	dp[0][0] = dp[1][0] = 1;
	for (int i = 2; i < str.length() - 1; ++i)
	{
		int front = i - 1;
		int thefront = i - 2;
		//一般情况,当前不变的应该等于前面变加不变的和,当前不能变 
		dp[i][0] = dp[front][0] + dp[front][1]; 
		if (str[i] == 'A') continue; 
		//如果当前是B前面那个又是A那么当前不变只能等于前面的变的情况 
		if (str[front] == 'A') dp[i][0] = dp[thefront][1];  
		if (str[i + 1] != 'A') continue;
		//如果当前出现了BA的情况那么就要考虑 
		if (str[front] == 'B')
		{//如果前面是B那么当前可变可不变 
			dp[i][0] = dp[i][1] = dp[front][0];	
		}
		else
		{//如果前面是A,那么当前不变前面只能变,当前变等于前面变加不变 
			dp[i][0] = dp[thefront][1];
			dp[i][1] = dp[front][0];
		}
	}
	int cur = str.length() - 1;
	//最后一个的一般情况 
	dp[cur][0] = dp[cur - 1][0] + dp[cur - 1][1]; 
	if (str[cur] == 'B' && str[cur - 1] == 'A') dp[cur][0] = dp[cur - 2][1];
	long long res = dp[cur][0];//返回的结果 
	//如果最后一个是A开头是B那么结果应该等于最后一个变的情况 
	if (str[0] == 'B' && str[cur] == 'A')
		res = dp[cur - 1][1];
	return res;
}

int main()
{
	string str;
	getline(cin, str);
	if (str[0] == 'A' && str[str.length() - 1] == 'B')
		rotate_right(str);
	if (str[1] == 'B' && str[2] == 'A')
		rotate_left(str);
	long long res = getCombination(str);
	if (str[0] == 'B' && str[1] == 'A')
	{
		swap(str[0], str[1]);
		res += getCombination(str);
	}
	cout << res;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值