过拟合
学习能力过于强大,以至于把训练样本所包含的不太一般的特性都学到了,测试集误差较大,训练集结果较好
欠拟合
学习能力低下,不能准确的根据特性分类,训练集,测试集误差都大
泛化误差
学习器在新样本上的误差
训练误差
学习期在训练集上的误差
评估方法
留出法
将数据集划分为两个部分,一部分当成训练集,另一部分当成测试集
交叉验证法
将数据集D划分为k个大小相似的子集
每次将k-1个子集当成训练集余下的子集当成测试集
自助法
对于包含m个样本的数据集D,每次有放回的从其中抽出一个样本将其放到训练集D’中,重复m次。然后将D/D’作为测试集
性能度量
对给定样本集 D = ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . . , ( x m , y m ) D = {(x_1,y_1),(x_2,y_2),....,(x_m,y_m)} D=(x1,y1),(x2,y2),....,(xm,ym), 其中 y i y_i yi是 x i x_i xi的真实标记,要评估学习器 f f f的心梗,需要把 f ( x ) f(x) f(x)和 y y y进行比较
错误率和精度
错误率定义
E
(
f
,
D
)
=
1
m
∑
i
=
1
m
(
f
(
x
i
)
≠
y
i
)
E(f,D)=\frac{1} {m}\sum_{i=1}^m (f(x_i)\neq y_i)
E(f,D)=m1i=1∑m(f(xi)̸=yi)
精度定义为
a
c
c
(
f
,
D
)
=
1
m
∑
i
=
1
m
(
f
(
x
i
)
=
y
i
)
=
1
−
E
(
f
,
D
)
acc(f,D) = \frac{1} {m}\sum_{i=1}^m (f(x_i)= y_i)=1-E(f,D)
acc(f,D)=m1i=1∑m(f(xi)=yi)=1−E(f,D)