ZKW线段树

单点修改:

#include <cstdio>

#define maxn 100005

using namespace std;

long long tree[maxn << 2];
int n, m, M;

void Add(long long s, long long val){
    for (tree[s = s + M] += val; s > 1; tree[s >>= 1] += val);
}

long long Ask(long long s, long long t){
    long long ans = 0;
    for (s = s + M - 1, t = t + M + 1; s ^ t ^ 1; s >>= 1, t >>= 1){
        if (~ s & 1) ans += tree[s ^ 1];
        if (t & 1) ans += tree[t ^ 1];
    }
    return ans;
}

int main(){
    scanf("%d%d", &n, &m);
    
    for (M = 1; M <= n + 1; ) M <<= 1;
    
    for (long long temp, i = 1; i <= n; i++){
        scanf("%lld", &temp);
        Add(i, temp);
    }
    
    while (m--){
        long long opt, x, y, z;
        scanf("%lld%lld%lld", &opt, &x, &y);
        if (opt == 1){
            scanf("%lld", &z);
            for (long long i = x; i <= y; i++) Add(i, z);
        }
        else printf("%lld\n", Ask(x, y));
    }
    
    return 0;
} 

 

因为这是ZKW线段树,所以x ^ 1 就是他的兄弟节点 (一开始一直没懂)

还有就是 M 是实际的数组下标->ZKW二叉树的节点的编号 要加上的值

s = s + M -1, t = t + M + 1就是把闭区间变成开区间

Add 是把要修改的节点到根节点上路径上的点全部加上val (这是因为ZKW线段树是从底向上操作的。。。)```cpp

#include <cstdio>

#define maxn 100005

using namespace std;

long long tree[maxn << 2], cover[maxn << 2]; 
int n, m, M, disM, dis[maxn << 2];

void Update(int k, long long val){
    long long size = 1 << disM - dis[k];
    while (k >>= 1) tree[k] += val * size;
}

void Add(int s, int t, long long val){
    for (s = s + M - 1, t = t + M +1; s ^ t ^ 1; s >>= 1, t >>= 1){
        if (~ s & 1) cover[s ^ 1] += val, Update(s ^ 1, val);
        if (t & 1) cover[t ^ 1] += val, Update(t ^ 1, val);
    }
}

long long Get(int k){
    long long size = 1 << disM - dis[k], ans = tree[k] + cover[k] * size;
    while (k >>= 1) ans += cover[k] * size;
    return ans;
}

long long Ask(int s, int t){
    long long ans = 0;
    for (s = s + M - 1, t = t + M + 1; s ^ t ^ 1; s >>= 1, t >>= 1){
        if (~ s & 1) ans += Get(s ^ 1);
        if (t & 1) ans += Get(t ^ 1);
    }
    
    return ans;
}

int main(){
    scanf("%d%d", &n, &m);
    
    for (M = 1; M <= n + 1; ) M <<= 1;
    
    for (int i = 2; i <= n + M; i++) dis[i] = dis[i >> 1] + 1;
    disM = dis[M];
    
    for (int i = 1; i <= n; i++) scanf("%lld", &tree[i + M]);
    for (int i = M - 1; i; i--) tree[i] = tree[i << 1] + tree[i << 1 | 1];
    
    while (m--){
        int opt, x, y;
        scanf("%d%d%d", &opt, &x, &y);
        
        if (opt == 1){
            long long z;
            scanf("%lld", &z);
            Add(x, y, z);
        }
        else printf("%lld\n", Ask(x, y));
    }
    
    return 0;
} 

 

这里主要是用了Lazy_tag的思想,只不过是从下往上传递的

disM指的是ZKW线段树的总深度

dis[x] 指的是x节点到根的距离+1(也就是深度)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值